
Figure 23: Linear probing qualitatively matches netuning weak-to-strong generalization. Test
accuracy as a function of strong student compute on a subset of our NLP tasks. Inset numbers
indicate dataset id (compare Figure 12). Accuracy of a linear probe on student model trained with
ground truth in black, accuracy of linear probe on students trained directly with weak linear probe
supervision shown in solid lines with circles (hue indicates compute of weak supervision).

D.2 LINEAR PROBING

In addition to our main netuning experiments, we also perform weak-to-strong generalization ex-
periments in the linear probing setting. We freeze all weak and strong model parameters, and train
new linear classication heads both using ground truth labels and using weak labels. We train lin-
ear probes with Adam optimizer (Kingma & Ba, 2014), 10−3 learning rate, batch size 128, and no
weight decay for 200 epochs, for both weak and strong model training. We do early stopping based
on agreement to the weak labels on the validation set and report test accuracy. Results are shown in
Figure 23. We observe qualitatively similar generalization compared to the full netuning case.

Generally, we found the linear probing setting to be very useful to quickly iterate on methods,
datasets and ideas. While netuning provides better results, the qualitative trends in linear probing
are similar, and the experiments are much faster and easier to run. For example, we initially found
positive results with condence loss (Section 4.3) and bootstrapping (Section 4.3.1) in the linear
probing setting.

E THE EFFECTS OF WEAK LABEL STRUCTURE

One challenge in weak-to-strong generalization is the presence of errors in the weak labels.
Throughout most of this paper, we consider a particular type of weak error structure: the kinds
of errors smaller, capacity-constrained language models make. However, this is not the only type of
errors possible.

In this section, we analyze synthetic examples of other kinds of weak label structures, and the
implications they have on generalization. Weak model error structure must be considered in relation
to the particular strong model at hand. For example, we conjecture that the extent to which the strong
model can imitate the weak supervisor may be very important. If we have two strong models of the
same performance on the actual task but one is very good at imitating the labels, then we expect that
model will generalize less desirably, at least with the naive netuning method.

In Section 5.1.3 we found that surprisingly the strongest students are imitating the weak supervisor
mistakes less than smaller student models in our setting. Since we expect superhuman models to
be very good at imitating human supervisor, this may be a major disanalogy. In this section we test
cases where the weak supervisor can be imitated easily.
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Figure 24: Synthetic experiment on simulation difculty. We consider three types of weak errors
in a linear probing setting: (a,d) perfectly simulatable, where weak models use a subset of strong
model features; (b,e) completely unsimulatable, where the weak labels are obtained by applying
random noise to the ground truth; (c,f) a mixture of the two settings, where label noise is applied
to perfectly simulatable weak labels. Top row of panels shows test accuracy and bottom row shows
agreement to the weak labels. In addition to weak label accuracy, the structure of mistakes plays a
major role in weak-to-strong generalization.

E.1 SYNTHETIC EXPERIMENTS ON SIMULATION DIFFICULTY

First, we consider a simplied linear probing setting, where we can ensure that the student can per-
fectly simulate the supervisor predictions by construction. Specically, we extract a representation
X ∈ Rn×d of the SciQ dataset using a model of an intermediate size in the GPT-4 family, where n
is the number of datapints, and d is the dimensionality of the residual stream (Elhage et al., 2021).
We can then consider the family of linear models10 Mk where k ≤ d by training a linear probe only
on the rst k features extracted by the model. In particular, for k = d we recover the standard linear
probe. By construction for k1 ≥ k2, the model Mk1

can perfectly simulate Mk2
.

Next, we can run our standard weak-to-strong generalization experiment, following the setup de-
scribed in Section 3, using the family of models Mk. We train the weak supervisor models on 10k
datapoints, and produce hard weak labels on the remaining 13k datapoints. We report the results
in Figure 24(a,d). In this setting, the simulation is very easy, and we do not observe substantial
improvements in the strong student model compared to the supervisor performance. The test agree-
ment values are substantially higher than the weak model accuracy, indicating that the students are
overtting to the supervisor errors. Interestingly, even in this simple setting the agreements are
not 100%, likely due to the fact that the student models are trained on nite data, and with light
l2-regularization.

We can also consider the opposite setting: what if the student model cannot simulate the mistakes
of the weak teacher at all? Specically, we generate weak labels by randomly ipping the labels
to match the accuracy of the weak models from the previous experiment. As a result, we get weak
labels with the same accuracy, but which are completely unpredictable. In Figure 24(b,e), when we
train the student model on the these weak labels, we can get substantially higher accuracy than the
accuracy of the weak labels. In other words, if the errors of the weak supervisor are completely
unpredictable (random) for the student, with enough data we should be able to recover good gener-
alization, substantially exceeding the performance of the supervisor.

10We train logistic regression using the default parameters in the sklearn.linear_model.
LogisticRegression class (Pedregosa et al., 2011) for this experiment.
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Figure 25: PGR for weak labels with same accuracy but different error structures. The inset
number in each panel indicates the dataset (compare Figure 12). Weak-to-strong generalization and
methods both depend critically on the structure of the weak supervisor errors. While it is trivial to
pick error structures that generalize well (for instance, random noise), these error structures are also
very disanalogous to the ultimate superalignment setting, where we want to study the structures of
human errors.
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Finally, in Figure 24(c,f) we consider a mixture of these two settings: we start with a perfectly
simulatable weak model M300, and then add various amounts of label noise to the resulting weak
labels. By training a strong student model (using all features) on the resulting weak labels, we
recover the performance close to the performance of M300.

Discussion of results. The simple experiment in this section suggests that in addition to the weak
label accuracy, it is important to consider the structure of weak errors. In particular, if the weak er-
rors are extremely easy for the strong model to simulate, the student may not generalize much better
than the weak supervisor with naive netuning on the weak labels. On the other hand, if the mistakes
of the weak supervisor are completely unpredictable, the student can denoise the predictions of the
supervisor and generalize better. In future work, we believe it is important to consider various types
of weak supervision with different structures of mistakes, and build a better understanding of how
they affect weak-to-strong generalization.

E.2 DIFFERENT WEAK ERROR STRUCTURE MEANS DIFFERENT GENERALIZATION

To further explore the impact of different weak error structures, we created several synthetic sets of
weak labels for each dataset, all with error rate identical to the weak model’s error rate. To construct
these labels, we start from ground truth, and then ip a subset of labels to match the accuracy of a
particular weak model. We target a few types of error structures, such as pure noise, easy-to-model
bias, hard-to-model bias, and adversarial bias.

In particular, we looked at:

1. weak supervisor: the baseline — labels are generated in the same way as in the rest of
the paper

2. random: ip the label of random datapoints
3. longest prompt: ip the label of longest datapoints by characters
4. shortest prompt: ip the label of shortest datapoints by characters
5. strong g.t. model unconfident: ip the label of the datapoints that the strong ceil-

ing model is most uncondent on
6. strong g.t. model confidently correct: ips the label of the datapoints that the

strong ceiling model is most condently correct on

Despite all of these weak labelers having the same weak accuracy, we nd that the generalization
can vary wildly depending on the structure of the weak errors. We report the results in Figure 25.

Furthermore, the dynamics of supervisor-student agreement through training can have qualitatively
different behavior (Figure 26). For errors coming from a weak model, we see that there is often ini-
tially a period of generalization, followed by a period of overtting where it learns the weak model’s
errors. The condence auxiliary loss mitigates this overtting. For easy-to-t error structures such
as longest prompt, the overtting happens much faster. For other kinds of errors, such as random
noise, we often see that generalization improves throughout: weak errors are not modeled, but the
signal from the weak model is.

E.3 MAKING IMITATION TRIVIAL

One possible major disanalogy in our setup, as discussed in Section 6.1, is the fact that our models
are not very good at imitating the weak model11 (Section 5.1.3), but superhuman models may be
very good at imitating humans. It is possible that if the strong model were good at imitating the
weak model, then it would generalize substantially less desirably by default.

To test an extreme version of this hypothesis, we create a synthetic setting where the strong model
can trivially imitate the weak model very well. In particular, we modify the task by appending “I
think this is {weak label}. What do you think?” to every prompt, where weak label is “correct”
or “incorrect” based on the weak model prediction. In this case, the hardened weak label is present
in-context, and the simulation is trivial.

11Also known as learning the “human simulator” in the terminology of Christiano et al. (2022).
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Figure 26: Training dynamics change for different weak errors. We show teacher-student agree-
ment for different weak error structures on three datasets. We see that the training dynamics have
qualitatively different behavior for different error structures, despite all weak labelers having the
same accuracy.
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Figure 27: Generalization when emulating weak labels is trivial. Very little weak-to-strong gen-
eralization occurs if emulating the weak labels is trivial: average PGR across tasks is 0.002± 0.003
for baseline, and 0.046 ± 0.108 for aux loss, compared to around 0.2 and 0.8 respectively for the
original tasks.

As expected, we nd that both the baseline and the condence loss introduced in Section 4.3 show
poor weak-to-strong generalization (Figure 27) in most cases. Interestingly, the condence loss still
improves upon the baseline achieving non-trivial generalization in several tasks.

F HOW SHOULD WE EMPIRICALLY STUDY SUPERALIGNMENT,
METHODOLOGICALLY?

What makes a setup good for studying superalignment in the rst place, all things considered?
Tractability and ease of study are clearly important criteria, but also certainly not the only ones.
This question is non-obvious because superalignment is qualitatively different from other machine
learning problems: it is a problem we will face in the future, not a problem that we face today.
Nevertheless, it is crucial that we solve this problem before it becomes serious, as even a single
failure of superintelligence misalignment in practice could be catastrophic.

This presents a major methodological challenge: how do we even approach studying a problem that
is not yet a problem? How do we make progress on the core difculties of superalignment? How do
we make progress with today’s systems, knowing that our efforts will not be wasted by surprising
new model capabilities that will inevitably arise in the future (Wei et al., 2022)? We do not claim to
have a complete answer to these questions, but we outline some best practices for maximizing our
chances of making real progress on superalignment.

Analogous setups. We should construct increasingly analogous empirical setups, and we should
enumerate any remaining disanalogies. A setup is analogous if our results on that setup do not rely
on assumptions that will break down in the future, making results today likely qualitatively similar
to results in the future. Our main evaluation setup, introduced in Section 3, is intended to be more
analogous to the superalignment problem. We enumerate some remaining disanalogies with our
setup in Section 6.1.

Enumerating assumptions. We should enumerate the key assumptions that our results (either
implicitly or explicitly) rely on. Clarifying what assumptions we are making makes it much easier
to know when our results might break down. We enumerate our main disanalogies and assumptions
in Section 6.1 and Appendix G.3.

Sensitivity analysis. We should evaluate the sensitivity of our results to changes in our assump-
tions and empirical setup. While we can make informed guesses about the future, we do not know
exactly what future models will be like, so it is difcult to entirely trust any particular experimen-
tal setup. Validating that our results are robust to many different sets of assumptions can make us
substantially more condent our results will transfer to the future superalignment problem. We do
some initial sensitivity analysis in Appendix E, and intend to do much more in future work.

Scalable techniques. We should avoid techniques that rely on assumptions that will likely break
down for future (superhuman) models. For example, when we do few-shot prompting we are in-
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tuitively incentivizing models to predict some useful distribution of human text, whereas when we
do netuning we are intuitively incentivizing a model to output what it knows regardless of how it
knows it. This is one of the reasons we focus on netuning methods in this paper: they are more
likely to scale to superhuman models compared to prompting.

Incidental usefulness today. One possible validation that progress on our setup is real would
be to show that it is incidentally useful in practice today; while we advocate focusing on the core
challenges of superalignment, if our ndings are never useful with today’s models that would be
evidence that we are not on the right track. One example of a near-term practical milestone would
be to align GPT-4 on instruction-following tasks using only GPT-3-level supervision; if we could get
strong alignment without any humans involved at all, that would make alignment much simpler and
cheaper today. However, usefulness today is certainly not sufcient for aligning superintelligence,
and in general a common failure mode of empirical alignment research is it prioritizes usefulness
today at the expense of analogousness and scalability.

Updating over time. We should update our evaluations and validate past ndings as we learn
more about what future models will look like. While we focus on the pretrained language model
paradigm today, we plan on updating our setup if or when this stops being the dominant paradigm.

G HOW WEAK-TO-STRONG GENERALIZATION FITS INTO ALIGNMENT

Superintelligent AI systems will be extraordinarily powerful; humans could face catastrophic risks
including even extinction (CAIS, 2022) if those systems are misaligned or misused. It is important
for AI developers to have a plan for aligning superhuman models ahead of time—before they have
the potential to cause irreparable harm.

Our plan for aligning superintelligence is a work in progress, but we believe that weak-to-strong
techniques could serve as a key ingredient. In this section we sketch several illustrative possiblities
for how we could use weak-to-strong generalization to help align superintelligent systems.

G.1 HIGH-LEVEL PLAN

Leike & Sutskever (2023) propose the following high level plan, which we adopt:

1. Once we have a model that is capable enough that it can automate machine learning—and
in particular alignment—research, our goal will be to align that model well enough that it
can safely and productively automate alignment research.

2. We will align this model using our most scalable techniques available, e.g. RLHF (Chris-
tiano et al., 2017; Ouyang et al., 2022), constitutional AI (Bai et al., 2022b), scalable over-
sight (Saunders et al., 2022; Bowman et al., 2022), adversarial training, or—the focus of
this paper—-weak-to-strong generalization techniques.

3. We will validate that the resulting model is aligned using our best evaluation tools available,
e.g. red-teaming (Perez et al., 2022a;b) and interpretability (Ribeiro et al., 2016; Olah et al.,
2018; Bills et al., 2023; Li et al., 2023).

4. Using a large amount of compute, we will have the resulting model conduct research to
align vastly smarter superhuman systems. We will bootstrap from here to align arbitrarily
more capable systems.

The goal of weak-to-strong generalization is to ensure step (2) is solved: align the rst model ca-
pable of automating machine learning and alignment research. Importantly, this rst model will
likely be qualitatively superhuman along important dimensions, so RLHF is unlikely to be sufcient
(Section 4). If we had a superhuman model, how would we apply weak-to-strong generalization to
align it?
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G.2 ELICITING KEY ALIGNMENT-RELEVANT CAPABILITIES WITH WEAK-TO-STRONG
GENERALIZATION

There are many different alignment-relevant capabilities we could try to elicit from a superhuman
model that could signicantly help with alignment, including:12

• Safety: does a given behavior produced by an AI system risk the safety of human lives or
well-being in important ways?

• Honesty: is a given natural language statement true or false?

• Instruction following: does a given behavior produced by an AI system follow a user’s
instruction faithfully?

• Code security: does some given code have important security vulnerabilities or back-
doors? Is it safe to execute it?

In the ideal case, the capability we elicit from the model would be robust enough that we can turn it
into a reward model and safely optimize it; future work should assess the feasibility of this approach.
At the opposite extreme, we could potentially use the elicited capability as an “oracle” that we can
manually query; intuitively, if we had a superhuman oracle model, we may be able to leverage it to
help us bootstrap to a more robust alignment solution, even if that oracle is not itself entirely robust.

G.3 ALIGNMENT PLAN ASSUMPTIONS

Many alignment plans which appear different on the surface actually depend on heavily correlated
assumptions. For a given alignment plan, it is also often unclear which subproblems the plan at-
tempts to solve, and which subproblems the plan assumes are unlikely to be an obstacle. As a result,
we think enumerating assumptions is an important part of making progress on alignment.

In addition to the major disanalogies discussed in Section 6.1, the assumptions we make for an
alignment plan based on weak-to-strong generalization include:

• No deceptive alignment in base models. We assume that pretrained base models (or the
equivalent in future paradigms) will be highly intelligent but not highly agentic (e.g. will
not have long-term goals)—and consequently will not be deceptively aligned (Hubinger
et al., 2019; Ngo et al., 2022; Carlsmith, 2023) out-of-the-box. Our goal is to elicit the
superhuman capabilities of this capable but safe base model, and use those capabilities to
create an aligned (possibly agentic) superhuman model.

• Elicited concepts are sufciently robust, or do not need to be. We assume it is ei-
ther possible to solve alignment using only a small amount of optimization applied to the
capabilities we elicit, or that it is possible to make weak-to-strong elicited capabilities suf-
ciently robust against overoptimization.

• The concepts we care about are natural to future AGI. The superhuman base model we
apply weak-to-strong generalization to has some “alignment-complete” concept, such as
honesty, that is extrapolated in the way we would endorse if we could understand everything
the superhuman model understands, and which is natural enough to the model that it is
feasible to elicit.

• Sufciently gradual takeoff. Before we have superintelligence, we will have somewhat
superhuman models long enough that we can use them to nish solving the full superintelli-
gence alignment problem. We can use it to solve superalignment before it causes recursive
self improvement or catastrophic damage.

• Moderately superhuman models are sufcient to solve alignment. We assume the rst
models capable of automating alignment research in practice are moderately superhuman,
i.e. in a regime similar to what we study empirically in this work. For example, we may
assume that we only need to bridge a weak-strong gap of at most (say) 4 OOMs of effective
compute.

12Ideally we elicit several related concepts and verify that we get consistent answers between them.
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• No need to solve human values. We assume we do not need to solve hard philosophi-
cal questions of human values and value aggregation before we can align a superhuman
researcher model well enough that it avoids egregiously catastrophic outcomes.

This list represents a non-exhaustive set of notable assumptions we often operate under, and we
will constantly reassess and update these assumptions over time as we learn more. We do not think
these are necessarily valid assumptions by default, and believe it is important to validate them, work
towards making them true, or mitigate failure modes from them being invalid.

Furthermore, there are a huge number of uncertainties about what future AI systems will look like
and exactly how we should align them.
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