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APPENDIX OUTLINE

• In Appendix A, we provide additional details on our setup and experiments.

• In Appendix B, we describe additional results, including negative results and methods that
did not work well in our experiments.

• In Appendix C, we report results on easy-to-hard generalization, where we only provide
supervision on easy examples.

• In Appendix D, we provide results in two more weak-to-strong learning settings: a self-
supervised computer vision setting on ImageNet, and a pure linear probing setting.

• In Appendix E, we provide additional results and discussion on the effect of weak supervi-
sor error simulation.

• In Appendix F, we discuss how we believe methodological progress should be made on
superalignment.

• In Appendix G, we describe how our work ts into the bigger picture of alignment.

A FURTHER EXPERIMENTAL DETAILS

Here, we provide further details on our experiments. Across all tasks, we use pretrained base models
from the GPT-4 family (OpenAI, 2023), spanning a range of model sizes.

A.1 NLP TASKS

Data preprocessing. We use popular NLP classication benchmark datasets listed in Table 1. We
obfuscate the names of the datasets in our plots (e.g. Figure 12) for condentiality; across all gures,
we replace the names of the datasets with their order in a randomized sequence. We apply various
preprocessing to the datasets. For example, some tasks are in FLAN (Wei et al., 2021) and we use
their preprocessing. For ANLI we group neutral entailments with contradictions. We convert each
dataset to a binary classication problem. For multiple-choice datasets, suppose each datapoint has
a question Q and multiple candidate answers A1, . . . , Ak. We then convert this datapoint to k new
datapoints of the form (Q,Ai), where the label is 0 for all incorrect answers Ai and 1 for the correct
answers. In this procedure, we also aim to maintain class balance, so we keep the same number
of correct and wrong answers per question6. We are also additionally rebalancing the classes in
datasets where one of the classes represents more than 55% of the data. To do so, we randomly drop
datapoints from the dominant class, so that the classes are perfectly balanced.

Models. In order to adapt our language models to the classication setting, we replace the un-
embedding layer of the model with a linear classication head with two outputs. We initialize the
weights of the classication head with the unembedding weights for tokens “0” and “1”.

Training hyperparameters. We netune all models for 2 epochs using a batch size of 32. In
the weak-to-strong generalization experiments, we early stop training based on the accuracy with
respect to the weak labels on a held-out validation set. See Section 5.1.1 for relevant discussion.
We only tuned the hyper-parameters of our methods on smaller model sizes, and on a subset of 8
datasets. The full GPT-4 model and most of the datasets were held-out, except for datasets [5–12]
(see Figure 12).

Weak labels. To produce the weak labels, we split the original dataset in half. We ensure that
related datapoints, e.g. datapoints that share the same question or premise, are always grouped to-
gether into the same half. Then, we train the weak supervisor model on the rst half of the dataset,
and use its prediction on the other half as the weak labels. We additionally save the weak labels on
the test set to evaluate metrics such as agreement in Section 5.1.3. The weak labels are soft labels
on the training data, i.e. the class probabilities predicted by the supervisor.

Evaluation. For all datasets, we report accuracy on the test set which is also balanced to have an
equal number of datapoints in each class. In particular, random guess performance corresponds to
50% accuracy on all NLP datasets.

6In some datasets there are multiple correct answers for each question.
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Table 1: Datasets and their sources. We summarize the NLP datasets we use and their original
sources.

Dataset Original Source

BoolQ Clark et al. (2019)
CosmosQA Huang et al. (2019)
DREAM Sun et al. (2019)
ETHICS [Justice] Hendrycks et al. (2020a)
ETHICS [Deontology] Hendrycks et al. (2020a)
ETHICS [Virtue] Hendrycks et al. (2020a)
ETHICS [Utilitarianism] Hendrycks et al. (2020a)
FLAN ANLI R2 Nie et al. (2019); Wei et al. (2021)
GLUE CoLA Warstadt et al. (2019); Wang et al. (2018)
GLUE SST-2 Socher et al. (2013); Wang et al. (2018)
HellaSwag Zellers et al. (2019)
MCTACO Ben Zhou & Roth (2019)
OpenBookQA Mihaylov et al. (2018)
PAWS Zhang et al. (2019)
QuAIL Rogers et al. (2020)
PIQA Bisk et al. (2020)
QuaRTz Tafjord et al. (2019)
SciQ Welbl et al. (2017)
Social IQa Sap et al. (2019)
SuperGLUE MultiRC Khashabi et al. (2018); Wang et al. (2019)
SuperGLUE WIC Pilehvar & Camacho-Collados (2018); Wang et al. (2019)
Twitter Sentiment Zhang et al. (2019)

Detailed results. In Figure 12, we provide detailed results across all datasets for both the baseline
and the auxiliary condence loss introduced in Section 4.3. In Figure 13 we report the detailed
results on overtting to the weak supervisor predictions for the NLP datasets.

A.2 CHESS PUZZLES

Data preprocessing. The GPT-4 pretraining dataset included chess games in the format of move
sequence known as Portable Game Notation (PGN). We note that only games with players of Elo
1800 or higher were included in pretraining. These games still include the moves that were played in-
game, rather than the best moves in the corresponding positions. On the other hand, the chess puzzles
require the model to predict the best move. We use the dataset originally introduced in Schwarzschild
et al. (2021b) which is sourced from https://database.lichess.org/#puzzles (see
also Schwarzschild et al., 2021a). We only evaluate the models ability to predict the rst move of
the puzzle (some of the puzzles require making multiple moves). We follow the pretraining for-
mat, and convert each puzzle to a list of moves leading up to the puzzle position, as illustrated in
Figure 14. We use 50k puzzles sampled randomly from the dataset as the training set for the weak
models and another 50k for weak-to-strong netuning, and evaluate on 5k puzzles. For bootstrap-
ping (Section 4.3.1), we use a new set of 50k puzzles from the same distribution for each step of the
process.

Training hyperparameters. We train (netune) all models for 5 epochs using a batch size of 32.
We do not apply early-stopping.

Weak labels. We produce weak labels by sampling predictions at temperature T = 0 (greedy
decoding) from the weak model on a held-out set of additional 50k puzzles. The weak labels are
completions showing the highest likelihood move according to the weak model.

Evaluation. To evaluate the models, we sample completions at temperature T = 0 on the held out
test set, and compute the fraction of datapoints where the model outputs the correct next move.
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Figure 12: Full weak-to-strong generalization results across 22 NLP datasets. Test accuracy as
a function of strong student compute across our full suite of standard NLP tasks. See Table 1 for
dataset details.
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