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ABSTRACT

Widely used alignment techniques, such as reinforcement learning from human
feedback (RLHF), rely on the ability of humans to supervise model behavior—for
example, to evaluate whether a model faithfully followed instructions or generated
safe outputs. However, future superhuman models will behave in complex ways
too difcult for humans to reliably evaluate; humans will only be able to weakly
supervise superhuman models. We study an analogy to this problem: can weak
model supervision elicit the full capabilities of a much stronger model? We test
this using a range of pretrained language models in the GPT-4 family on natural
language processing (NLP), chess, and reward modeling tasks. We nd that when
we naively netune strong pretrained models on labels generated by a weak model,
they consistently perform better than their weak supervisors, a phenomenon we
call weak-to-strong generalization. However, we are still far from recovering the
full capabilities of strong models with naive netuning alone, suggesting that tech-
niques like RLHF may scale poorly to superhuman models without further work.
We nd that simple methods can often signicantly improve weak-to-strong gen-
eralization: for example, when netuning GPT-4 with a GPT-2-level supervisor
and an auxiliary condence loss, we can recover close to GPT-3.5-level perfor-
mance on NLP tasks. Our results suggest that it is feasible to make empirical
progress today on a fundamental challenge of aligning superhuman models.

1 INTRODUCTION

Wemainly steer or align today’s models with reinforcement learning from human feedback (RLHF):
we reinforce behaviors that human evaluators rate highly and penalize behaviors that evaluators rate
poorly (Christiano et al., 2017; Stiennon et al., 2020; Ouyang et al., 2022; Glaese et al., 2022; Bai
et al., 2022a). This procedure is very effective when human evaluators can tell if model behavior is
good or bad and is a core part of training modern language model assistants such as ChatGPT.

However, superhuman models will be capable of complex and creative behaviors that humans can-
not fully understand. For example, if a superhuman assistant model generates a million lines of ex-
tremely complicated code, humans will not be able to provide reliable supervision for key alignment-
relevant tasks, including: whether the code follows the user’s intentions, whether the assistant model
answers questions about the code honestly, whether the code is safe or dangerous to execute, and
so on. As a result, if we netune a superhuman model with human supervision on a reward mod-
eling (RM) or safety classication task, it is unclear how that model will generalize to complicated
behaviors that humans could not reliably supervise themselves.

This leads to a fundamental technical challenge of aligning superhuman models (superalignment):
how can weak supervisors control models much smarter than them? Despite the importance of
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Figure 1: An illustration of our methodology. Traditional ML focuses on the setting where humans
supervise models that are weaker than humans. For the ultimate superalignment problem, humans
will have to supervise models much smarter than them. We study an analogous problem today:
using weak models to supervise strong models.

this problem, it is difcult to empirically study today. Most prior work on alignment has either
confronted this core challenge head-on—but been restricted to primarily theoretical frameworks and
toy problems (Irving et al., 2018; Christiano et al., 2018; Leike et al., 2018; Demski & Garrabrant,
2019; Hubinger et al., 2019), or empirically studied humans supervising today’s models—without
addressing the core challenges that may arise with superhuman models (Christiano et al., 2017; Wu
et al., 2021; Ouyang et al., 2022; Bowman et al., 2022; Saunders et al., 2022). In contrast, we would
ideally like to have a setup that captures core challenges of aligning future superhuman models while
also being able to make iterative empirical progress today.

We propose a simple setup for studying the problem of humans supervising superhuman models by
considering an analogy: can we use weak models to supervise strong models? We can empirically
test this by netuning large (strong) pretrained models on labels generated by small (weak) mod-
els and observing how they generalize. Just like the problem of humans supervising superhuman
models, our setup is an instance of what we call the weak-to-strong learning problem.

Why should weak-to-strong learning be possible? On the one hand, the strong model could simply
learn to imitate the weak supervisor, including its errors, since that is what we would naively train
it to do. On the other hand, strong pretrained models should already have good representations of
the alignment-relevant tasks we care about. For example, if a model can generate complicated code,
then it should intuitively also know whether that code faithfully adheres to the user’s instructions.
As a result, for the purposes of alignment we do not need the weak supervisor to teach the strong
model new capabilities; instead, we simply need the weak supervisor to elicit what the strong model
already knows. This gives us hope that the strong model can generalize beyond the weak supervision,
solving even hard problems for which the weak supervisor can only give incomplete or awed
training labels. We call this phenomenon weak-to-strong generalization.

We study our weak-to-strong learning setup (Section 3) by netuning base (i.e. pretrained-only)
language models from the GPT-4 family (OpenAI, 2023),1 spanning 7 orders of magnitude (OOMs)
of pretraining compute, across three settings: a large set of popular natural language processing
(NLP) benchmarks, chess puzzles, and our internal ChatGPT reward modeling dataset. Our main
ndings include:

1These models share the same general architecture and pretraining dataset as GPT-4. However, this model
series does not include the models known as GPT-2, GPT-3, and GPT-3.5.
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Figure 2: Strong models trained with weak supervision generalize beyond their supervisor, and
improving weak-to-strong generalization is tractable. We show test accuracy on a representative
NLP task (left), chess puzzles (middle) and the ChatGPT reward modeling task (right). We show the
weak supervisor trained on ground truth labels (light grey) and the strong student trained with weak
supervision naively (green), with the best method in each setting (purple), or with ground truth
supervision (dark grey). For NLP and chess we supervise GPT-4 using GPT-2-level supervision,
while for reward modeling we supervise a 3.5-level model using GPT-2-level supervision. The best
method is the auxiliary condence loss for the NLP task (Section 4.3.2), bootstrapping for Chess
puzzles (Section 4.3.1), and unsupervised generative netuning for reward modeling (Section 5.2.2;
generative-netuning is also used for the strong ceiling performance).

1. Strong pretrained models naturally generalize beyond their weak supervisors. If we
naively netune strong models with labels generated by weak models, they consistently
outperform their weak supervisors (Section 4.2). For example, on NLP tasks, if we ne-
tune GPT-4 with labels from a GPT-2-level model, we typically recover about half of the
performance gap between the two models.

2. Naively netuning on weak supervison is not enough. Despite positive weak-to-strong
generalization, there still remains a substantial gap between strong models netuned with
weak supervision and strong models netuned with ground truth supervision. Weak-to-
strong generalization is particularly poor for ChatGPT reward modeling. Collectively, our
results provide empirical evidence that naive RLHF will likely scale poorly to superhuman
models without additional work.

3. Improving weak-to-strong generalization is tractable. We nd that we can improve per-
formance by encouraging strong models to have condent predictions with an auxiliary
loss, bootstrapping supervision with intermediate models, and improving model represen-
tations with unsupervised netuning. For example, when supervising GPT-4 with a GPT-2-
level model on NLP tasks using the auxiliary condence loss, we typically recover nearly
80% of the performance gap between the weak and strong models.

Our work has important limitations. None of our methods work consistently in all settings, and
especially in the RM setting we are still far from recovering the full performance gap between weak
and strong models. Thus our methods serve more as proofs-of-concept that weak-to-strong gener-
alization is tractable, rather than practical solutions we recommend deploying today. Furthermore,
there are still important disanalogies between our empirical setup and aligning superhuman models
that we did not address (Section 6); continuously rening our basic setup will be important for en-
suring that research today continues to make real progress toward aligning the superhuman models
we develop in the future.

Despite the limitations of our work, we nd our results to be highly encouraging. We show that sub-
stantial weak-to-strong generalization is not only possible, but actually a widespread phenomenon.
We also show that with very simple methods, we can drastically improve the ability of weak super-
visors to elicit knowledge from strong models. With much more progress in this direction, we could
get to the point where we can use weak supervisors to reliably elicit knowledge from much stronger
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models, at least for some key tasks that we care about. This may allow us to develop superhuman
reward models or safety classiers, which we could in turn use to align superhuman models.

Aligning superhuman models is essential for making them safe; there is increasing recognition that
failing to align such powerful models has the potential to be catastrophic, making this one of the
most important unsolved technical problems in the world (CAIS, 2022). We think it is now more
tractable than ever to make rapid iterative empirical progress toward solving this problem.

2 RELATED WORK

We study how we can leverage the generalization properties of deep neural networks to solve weak-
to-strong learning. Our problem setting and methods are closely connected to many existing research
areas.

Weakly-supervised learning. Weak-to-strong learning is a special type of weakly supervised
learning—a setting in which models are trained using unreliable labels (Bach et al., 2017; Rat-
ner et al., 2017; Guo et al., 2018). There is also a rich literature on the related problem of learning
from noisy labels (Song et al., 2022). Common methods include bootstrapping (Reed et al., 2014;
Han et al., 2018; Li et al., 2020), noise-robust losses (Zhang & Sabuncu, 2018; Hendrycks et al.,
2018; Ma et al., 2020), and noise modeling (Yi & Wu, 2019). Unlike most work on label noise, the
errors in our weak supervision are much harder to address than uniform label noise, instead having
“instance-dependent” errors (Frénay & Verleysen, 2013). Semi-supervised learning, in which la-
bels are only available for a subset of the data, is also closely related (Kingma et al., 2014; Laine &
Aila, 2016; Berthelot et al., 2019). We could also study our problem in a semi-supervised setting by
having an “easy” subset of examples that weak supervisors provide reliable labels for and a subset
of unlabeled “hard” examples that the weak supervisor can’t reliably label, a problem which we call
“easy-to-hard generalization” (see Appendix C).

Student-teacher training. The framework of rst training a teacher and then training a student on
teacher’s pseudo-labels is widely used in semi-supervised learning (Laine & Aila, 2016; Tarvainen
& Valpola, 2017; Xie et al., 2020), domain adaptation (French et al., 2017; Shu et al., 2018), and
knowledge distillation (Hinton et al., 2015; Gou et al., 2021; Stanton et al., 2021; Beyer et al., 2022).
In contrast to most prior work, we focus on the setting where the student is much more capable than
the teacher.

Furlanello et al. (2018) and Xie et al. (2020) also consider cases where the student is at least as
capable as the teacher. However in their settings the student is randomly initialized and has access
to ground truth labels. Moreover, compared to most past work we are focused on qualitatively very
weak supervision. For example, we are interested in huge leaps in generalization, similar to going
from “3rd grade-level” supervisors to “12th grade-level” student models. Despite these differences
with past work, we expect many methods from semi-supervised learning and domain adaptation to
translate to our setting. For example, we found that a type of condence auxiliary loss similar to
past work (Grandvalet & Bengio, 2004) improves weak-to-strong generalization in Section 4.3.

Robustness of pretraining and netuning. Many papers have shown that pretraining
on massive, diverse data leads to more robust representations that generalize better out-of-
distribution (Hendrycks et al., 2019; 2020b; Radford et al., 2021; Liu et al., 2022). Finetuning typ-
ically improves in-distribution generalization, but often performs poorly out-of-distribution, some-
times even degrading performance relative to zero-shot prompting (Kumar et al., 2022; Wortsman
et al., 2022b; Awadalla et al., 2022). Recent approaches to mitigating this problem include weight
ensembling (Wortsman et al., 2022b;a), netuning only a subset of layers (Kirichenko et al., 2023;
Lee et al., 2022a), or mitigating the distortion effects that netuning has on pretrained features (Ku-
mar et al., 2022). We did not nd strong results in preliminary explorations of approaches similar to
these (Appendix B), but we expect that with more thorough explorations one may be able to attain
much stronger results with these or other ideas from the robust netuning literature.

Debiasing. In weak-to-strong generalization, the weak labels contain a specic form of bias,
which results from the weak models’ lack of capability. There is a substantial literature on learning
from biased training data (Bellamy et al., 2018). However, most work focuses on known biases,
for example where we know that the models perform worse on minority groups. For known biases,
common methods include Group Distributionally Robust Optimization (Sagawa et al., 2019), adver-
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sarial training (Zhang et al., 2018), and model editing (Santurkar et al., 2021; Meng et al., 2022).
In contrast, our setting can be viewed as a particularly difcult debiasing problem where the bias is
unknown. Some methods that automatically discover and mitigate biases include clustering (Sohoni
et al., 2020), loss variance reduction (Khani et al., 2019), and auditing and re-training on high-loss
group (Kim et al., 2019; Liu et al., 2021).

Imitation and preference learning. The goal of alignment is to steer already-capable models
to do what we want them to do. For example, the base GPT-4 model is good at generating text
following its pretraining distribution, but does not readily follow instructions. To align pretrained
language models today, we netune them using imitation learning on human demonstrations (Bain
& Sammut, 1995; Atkeson & Schaal, 1997) or by using methods such as reinforcement learning
from human feedback (RLHF) (Christiano et al., 2017; Stiennon et al., 2020; Ouyang et al., 2022;
Glaese et al., 2022; Bai et al., 2022a). Constitutional AI (Bai et al., 2022b; Lee et al., 2023) leverages
AI feedback to align language models, but still uses an initial RLHF phase. However, both imitation
learning and preference learning assume high-quality human supervision, making it unclear if they
will work for superhuman models.

Scalable oversight. Scalable oversight techniques aim to improve the ability of humans to super-
vise models. For example, humans may ask models to critique the outputs of other models (Irving
et al., 2018; Saunders et al., 2022) or use models to help decompose a problem into simpler sub-
problems (Leike et al., 2018; Christiano et al., 2018; Lightman et al., 2023). Scalable oversight
methods typically take advantage of special problem structure, like decomposability or the fact that
evaluation is easier than generation. In contrast to improving human supervision, we focus on gener-
alizing beyond human supervision such that models perform well even in settings we cannot reliably
supervise. That said, our weak-to-strong learning setup can be used to compare scalable oversight
methods, generalization-based methods, and more. Our setup also resembles a proposal for measur-
ing progress on scalable oversight known as “sandwiching”, which uses weak and strong humans
(Cotra, 2021; Bowman, 2022).

Knowledge elicitation and honesty. Christiano et al. (2022) introduced a theoretical problem
called Eliciting Latent Knowledge (ELK), in which the goal is to elicit latent knowledge from a su-
perhuman machine learning model even under worst case assumptions. For example, a special case
of ELK is honesty (Evans et al., 2021), where the goal is for the models to report their true beliefs2.
Wentworth (2020) hypothesizes a tendency for neural networks to develop “natural abstractions”
that are easier to elicit. Recent empirical work on ELK includes a benchmark for measurement
tampering (Roger et al., 2023), methods for discovering latent knowledge (Burns et al., 2023), and
studies of honesty (Li et al., 2023; Pacchiardi et al., 2023). Our setting can be viewed as a general
methodology for empirically studying problems like ELK and honesty across a wide range of tasks.

3 METHODOLOGY

A core challenge of superalignment is that humans will need to supervise models much smarter than
us. This is a special case of what we call the weak-to-strong learning problem: how can a weak
supervisor oversee a model much smarter than it? In this paper, we study a simple analogy, in which
we replace the weak human supervisor with a weak model supervisor.

For a given task of interest, consisting of a dataset and a performance metric, we:

1. Create the weak supervisor. Throughout most of this work, we create weak supervisors
by netuning small pretrained models on ground truth labels.3 We call the performance
of the weak supervisor the weak performance, and we generate weak labels by taking the
weak model’s predictions on a held-out set of examples.

2. Train a strong student model with weak supervision. We netune a strong model with
the generated weak labels. We call this model the strong student model and its resulting
performance the weak-to-strong performance.

2Like Evans et al. (2021), we dene honesty to mean a model reporting what it believes to be true, in contrast
to truthfulness which asks whether what a model reports is true.

3In Appendix D and Appendix E we study other synthetic weak supervisors. Future work could test many
more sources of weak supervision, such as by having 3rd grader humans provide labels.
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3. Train a strong model with ground truth labels as a ceiling. Finally, for comparison, we
netune a strong model with ground truth labels.4 We call this model’s resulting perfor-
mance the strong ceiling performance. Intuitively, this should correspond to “everything
the strong model knows,” i.e. the strong model applying its full capabilities to the task.

For more details on how we train each model, see Appendix A.

Typically, weak-to-strong performance will be between weak performance and strong ceiling per-
formance. We dene the performance gap recovered (PGR) as a function of the above three
performances (weak, weak-to-strong, and strong ceiling) as shown in the illustration below.

PGR measures the fraction of the performance gap (the difference in performance between the weak
and strong ceiling models) that we can recover with weak supervision. If we achieve perfect weak-
to-strong generalization, PGR is 1. If the weak-to-strong model does no better than the weak super-
visor, then PGR is 0.

Advantages. Our setup has a number of advantages, including:

1. It can be studied with any pair of weak and strong models, making it easy to study scaling
laws and not requiring access to expensive state-of-the-art models. Moreover, it does not
require working with humans, so feedback loops are fast.

2. It can be studied for any task of interest, making it easy to empirically test across a wide
range of settings.

3. Success will be practically useful even before we develop superhuman models: for ex-
ample, if we nd ways to align GPT-4 with only weak human supervision or with only
GPT-3-level supervision, that would make it more convenient to align models today.

Limitations. Our setup still has important disanalogies to the ultimate problem of aligning super-
human models. We view our setup as removing one of the main disanalogies in prior work, not as
providing a nal, perfectly analogous setup. Two remaining disanalogies include:

1. Imitation saliency. Future superhuman models will likely have salient representations
of human behaviors, but our strong models may not have learned features relevant for
imitating weak model predictions; simply imitating the weak supervisor may thus be an
easier failure mode to avoid in our setting than it will be in the future. More generally, the
types of errors weak models make today may be different from the types of errors humans
will make when attempting to supervise superhuman models.

2. Pretraining leakage. Our pretraining data implicitly contains supervision from humans.
It may thus be articially easy to elicit strong models’ capabilities in our setting, since they
were directly pretrained to observe strong (human-level) performance. Superhuman-level
performance may not be directly observed in the same way—superhuman knowledge might
be more latent, e.g. because it was learned from self-supervised learning—and thus might
be harder to elicit from superhuman models in the future.

4For tasks solved by superhuman models that humans cannot evaluate, we will not have access to ground
truth labels. However, we allow access to ground truth labels in our experimental setting today for scientic
and evaluation purposes. Note that we evaluated weak-to-strong performance against ground truth many times
while iterating on methods; however, we held out our largest model (GPT-4) and about half of NLP tasks
throughout the project.
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More generally, we do not yet know how superhuman models will be built, but they could develop
new inductive biases that are qualitatively different from today’s models. We view iterating on our
methodology to produce even more analogous setups as a key priority for future work, as we discuss
in more detail in Section 6.

4 MAIN RESULTS

In this section, we report our main empirical results, including baselines and promising methods.

4.1 TASKS

Popular natural language processing benchmarks. We consider 22 popular NLP classication
datasets covering ethics, commonsense reasoning, natural language inference, sentiment analysis,
and other domains. We convert all datasets to binary classication tasks and approximately balance
the classes. We produce soft labels from the weak model. See a full list of the datasets and their
sources in Table 1.

Chess puzzles. We use the dataset originally introduced in Schwarzschild et al. (2021b), which
contains chess puzzles from the lichess.org website (Lichess Team, 2023). Each puzzle con-
sists of a chess position, and a sequence of optimal moves to play to solve the puzzle. For our
evaluation, we predict the rst move played, which is the best move in the given chess position. We
illustrate the data format in Appendix Figure 14. For weak labels, we sample from the weak model
with temperature 0. Note that unlike the other binary classication tasks we study in this paper, this
is a generative task.

ChatGPT reward modeling. The standard approach to aligning models today is reinforcement
learning from human feedback (RLHF). A critical step of RLHF is to train a reward model (RM)
to predict human preferences between model responses. Specically, a reward model is trained
on a dataset consisting of dialogs between a human and an assistant model. For each query, the
humans compare multiple possible responses (completions) from the assistant, providing human
preference data. Then, a reward model is trained to predict the results of pairwise comparisons
between completions. Finally, the assistant model is trained by optimizing against the reward model
with reinforcement learning (RL). In our work, we do not study the RL step, and instead assume the
goal is to maximize reward model accuracy. For more details on reward models, see e.g. Ouyang
et al. (2022). We use a proprietary dataset used to train ChatGPT reward models.

For more details about our tasks and setup, see Appendix A.

4.2 NAIVELY FINETUNING ON WEAK LABELS

In each of these 3 settings (NLP tasks, chess puzzles, and reward modeling) we evaluate how well
strong students generalize when naively netuned on labels generated by weak supervisors. We
study pretrained language models from the GPT-4 family (OpenAI, 2023), which allow us to study
student-supervisor compute disparities of many orders of magnitude. We nd that PGRs are al-
most universally positive—in virtually all settings that we studied, and across almost all student and
supervisor sizes, students outperform their supervisors (Figure 3).

On the popular NLP benchmarks, we nd especially promising weak-to-strong generalization:
strong models trained with weak supervision can often generalize to a substantially higher perfor-
mance than the weak model itself. Even with very weak supervisors and strong models with many
orders of magnitude more compute, we recover more than 20% of the performance gap. The PGR
increases both with weak supervisor size and with strong student size; for the largest students, the
PGR is often above 50%.

We see more mixed results in the chess puzzle setting. In particular, when using the smallest weak
models, the PGR is close to zero and the test accuracy curves appear at. However, as the size of the
weak supervisor increases, the PGR increases substantially; for small supervisor-student gaps, PGR
can be above 40%. Unlike in the NLP setting, where PGR improves with the strong student size,
PGR decreases with the strong student size for a given weak supervisor on chess puzzles. The cor-
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Figure 3: Promising weak-to-strong generalization with naive netuning on NLP tasks and
chess, but poor generalization on the ChatGPT reward modeling task. (a,b,c) Test accuracy
as a function of strong student size on (a) NLP tasks, (b) chess puzzles, and (c) the ChatGPT
reward modeling task. Accuracy of strong students trained with ground truth in black, accuracy
of strong students trained with weak supervision shown with colored lines (hue indicates size of
weak supervisor). (d,e,f) Same as panels a,b,c but for performance gap recovered (see Section 3
for details). For NLP settings, we compute the median across tasks (see Figure 12 for full details).
We nd decent weak-to-strong generalization and even positive PGR scaling on NLP tasks, decent
generalization for small supervisor-student gaps but negative PGR scaling on chess puzzles, and
both poor generalization and scaling for ChatGPT reward modeling.

responding test accuracy curves appear concave, potentially exhibiting inverse scaling (McKenzie
et al., 2023) in strong student size.

Finally, we nd that weak-to-strong generalization is poor by default in the ChatGPT reward model
setting. We are usually only able to recover roughly 10% of the performance gap between the weak
supervisor and the strong student. Even for relatively small gaps in compute between the weak and
strong models, PGR almost never exceeds 20%.

In general, across all our settings, we observe weak-to-strong generalization: strong students consis-
tently outperform their weak supervisors. It is not obvious why this should happen at all—especially
from naive netuning alone—and it gives us hope that weak-to-strong learning is a tractable prob-
lem. At the same time, our results suggest that naively using weak, human-level supervision will be
insufcient to align strong, superhuman models; we will need qualitatively new techniques to solve
superalignment.

4.3 IMPROVING WEAK-TO-STRONG GENERALIZATION IS TRACTABLE

We now show that we can use simple methods to substantially improve weak-to-strong generaliza-
tion. While none of the methods we test works universally, these methods are proofs-of-concept that
across many different tasks we can substantially improve generalization.

4.3.1 BOOTSTRAPPING WITH INTERMEDIATE MODEL SIZES

Bootstrapping is a long-standing idea in alignment: instead of directly aligning very superhuman
models, we could rst align an only slightly superhuman model, use that to align an even smarter
model, and so on (Christiano, 2019; 2018; Leike & Sutskever, 2023; Worley, 2021). Our setting
allows us to empirically test this idea.
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Figure 4: Bootstrapping improves weak-to-strong generalization on chess puzzles. (a) Test
accuracy as a function of strong student size. Accuracy of students trained with ground truth in
black, accuracy of students naively trained with weak supervision shown with dotted lines (hue
indicates size of weak supervisor). Accuracies of students trained via bootstrapping shown with
colored squares (including both the nal weak-to-strong performance and the performance of the
intermediate models during bootstrapping). (b) Same as a with PGR. By taking multiple small steps
instead of one big step we see substantially improved generalization, especially for larger student
models.

Specically, we can construct a sequence of model sizes M1 → M2 → . . . → Mn of increasing
sizes. Then, we use the weak labels fromM1 to netuneM2, useM2 to generate new weak labels
that we can use to netune the next model in the sequence, M3, and so on.

We evaluate bootstrapping in the chess puzzle setting. When we naively netune on weak labels for
chess (Section 4.2), we see high PGR when we cross small supervisor-student gaps, but low PGR
for larger gaps. As a result, in this setting it may help to take multiple small steps—steps where
PGR should be high—instead of one big step.

For each round of bootstrapping, we run three iterations of weak-to-strong learning, i.e. we bootstrap
the weak supervision using two intermediate model sizes before nally netuning the largest model
in the sequence. We report the results (including all intermediate weak-to-strong models within
each bootstrap) in Figure 4. Bootstrapping improves PGR compared to the baseline, especially for
larger student models. With the naive method, transfer accuracy curves atten as the weak-strong
gap grows larger; with bootstrapping, the accuracy continues to monotonically improve.

While the results in the chess setting are promising, in preliminary experiments we observed only
small improvements with bootstrapping on NLP tasks and no improvements in the RM setting.
This makes sense intuitively: unlike in the chess setting where naive PGR decreased with larger
supervisor-student gaps, naive PGR increased or was rougly constant for larger supervisor-student
gaps in the NLP and reward modeling settings. Overall, these results suggest bootstrapping is a
plausible avenue to investigate for improving weak-to-strong generalization and can be helpful in
some settings, but that naive bootstrapping alone will not be enough to align models much smarter
than their supervisors.

4.3.2 AN AUXILIARY CONFIDENCE LOSS CAN DRAMATICALLY IMPROVE GENERALIZATION
ON NLP TASKS

In our baseline results (Section 4.2), we naively netune the strong student on the labels provided by
the weak supervisor. Because we are directly training the strong student to imitate the weak super-
visor, it may also learn to imitate the errors of the supervisor (see Section 5.1 for more discussion).
Intuitively, we want to avoid this failure mode and provide additional regularization towards what
the strong pretrained model already internally knows: we want the student to learn the intent of the
supervisor, but not to imitate its mistakes.
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Figure 5: Substantially improved generalization on NLP datasets with a simple auxiliary loss.
(a) Test accuracy as a function of strong student size. Accuracy of a student trained with ground
truth in black, accuracy of students naively trained with weak supervision shown with dotted lines.
Accuracies of students trained with auxiliary condence loss shown with colored triangles. Median
computed across 22 NLP tasks (hue indicates size of weak supervisor), see Figure 6 for individual
datasets. (b) Same as a with PGR. The condence loss can improve generalization drastically,
especially for large supervisor-student gaps.

We operationalize this intuition by adding an auxiliary condence loss term to the standard cross
entropy objective. This method is closely related to conditional entropy minimization (Grandvalet
& Bengio, 2004) which is a prominent technique in semi-supervised learning. Specically, we add
an additional loss term which reinforces the strong model’s condence in its own predictions—
even when they disagree with the weak labels. We provide a detailed description of the method in
Appendix A.4.

In Figure 5, we plot accuracy and PGR curves with this method on our NLP tasks. We nd that
while it performs slightly worse than the naive baseline for smaller strong students, it dramatically
improves generalization for large gaps in compute between weak and strong models. With the
smallest weak supervisor and largest strong student, the condence loss increases median PGR from
about 25% to nearly 80%.

In addition, we also plot generalization curves for a representative subset of NLP datasets in Figure 6,
as well as the full panel of datasets in Figure 12. There are some settings in which the condence
loss does not help much or degrades performance, e.g. when the gap between the weak supervisor
and strong student is small or when the dataset features inverse scaling even with ground truth
supervision. But the condence loss improves performance on most NLP datasets dramatically, and
for many datasets we get almost perfect generalization, recovering nearly all the performance of the
strong model, even when using the smallest weak supervisors.

Finally, we nd evidence consistent with our motivating intuition for the condence loss (allowing
the strong student to condently disagree with its weak supervisor): the auxiliary loss reduces the
strong student’s imitation of weak errors and mitigates weak label overtting (see Section 5.1).

5 UNDERSTANDING WEAK-TO-STRONG GENERALIZATION

Strong methods will be essential for solving superalignment, but to trust those methods it is also
important to understand when and why they work. A better understanding of weak-to-strong gener-
alization could help us trust that generalization will continue working even in the future high-stakes
settings we care most about, and could help us develop better methods along the way. In this sec-
tion, we study two phenomena relevant to weak-to-strong generalization: imitation of supervisor
mistakes and salience of the tasks to the strong student model.
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Figure 6: Simple auxiliary loss improves generalization across most datasets. Test accuracy as
a function of strong student compute for a representative sample of NLP tasks. See Table 1 for
dataset details and Appendix Figure 12 for results on all 22 NLP tasks. Auxiliary loss is shown with
triangles, and the baseline with dotted lines. Weak supervisor model size shown in varying colors,
with ground truth supervision shown in black.

5.1 UNDERSTANDING IMITATION

When we train a strong model with weak supervision on some task, our hope is that the strong
model will perform that desired task as well as possible, leveraging the latent capabilities it learned
from pretraining to signicantly outperform the weak supervisor. A salient way in which we could
fail to achieve that desired generalization is if the strong model instead learns to imitate the weak
supervisor—predicting how the weak supervisor would have classied each example. In particular,
if the weak labels contain systematic errors that are easy to learn, the strong model could learn to
imitate those errors. This is also a concern raised in theoretical work on superalignment, which has
argued that the human simulator failure mode could be important: naive human supervision might
result in superhuman models learning to imitate what a human would say, rather outputting its best
predictions (Christiano et al., 2022).

5.1.1 OVERFITTING TO WEAK SUPERVISION

The failure mode of imitating weak supervision is especially relevant to our naive baseline in Sec-
tion 4.2, which directly trains the student to imitate the supervisor. In the case of innite training
data, naively tting the weak labels should result in perfect imitation, and a PGR of zero. In prac-
tice, we train on nite data for a small number of epochs. Unlike typical ML settings, however, we
could expect to observe overtting even when training for less than a single epoch: the strong model
might overt to the weak supervisor labels and its errors, degrading ground truth test accuracy over
training even without classic overtting to any specic training examples.

Empirically, we see that the strong student indeed appears to overt to the weak supervisor’s errors.
In Figure 7(a) we show ground truth test accuracy curves over the course of training for the ChatGPT
RM task, and in Figure 7(b) and (c) we compare the best5 and nal ground truth test accuracies
(median across all weak-strong model pairs). We nd overtting for large weak-strong gaps. For
small weak-strong gaps, weak-to-strong performance typically monotonically increases over the
course of training. For larger gaps, weak-to-strong performance often increases initially, but then
starts dropping well before a single epoch has elapsed. Ground truth early stopping, which “cheats”

5Note that our best test accuracies may slightly overstate accuracy, due to noisy evaluations.

11



Figure 7: Strong models overt to the weak labels. In all gures, we show data for the ChatGPT
Reward Modeling task. (a) Weak-to-strong performance over the course of training. Hues indicate
the student-supervisor gap. (b) Best weak-to-strong performance during training (stars) and weak-
to-strong performance at the end of training (dashed). Weak performance in black. Hue indicates
the size of the weak supervisor. (c) Median best and nal performance gap recovered (PGR) ag-
gregated across all supervisor-student pairs. We see overtting to weak labels for large weak-strong
gaps, even within one epoch. In these cases, the best test accuracy achieved over training can be
substantially better than the test accuracy at the end of training. See Figure 13 for the corresponding
analysis of a representative subset of NLP tasks.

by evaluating against ground truth and stopping at an optimal step with respect to ground truth test
labels, typically gives a PGR improvement of around 5 percentage points.

We see the same phenomenon for NLP tasks in Figure 13. In the NLP setting, we nd that “cheating”
early stopping on ground truth gives a 15 percentage point boost in PGR over the model at the end
of training, and a 10 percentage point boost in PGR compared to “non-cheating” early stopping with
respect to weak labels.

Unfortunately, an early stopping criterion that uses ground truth labels does not constitute a valid
method. Nevertheless, the results above suggest that imitating weak supervisor errors may be an
important phenomenon in our setting.

Moreover, these results suggest that better early stopping or regularization strategies may be able to
substantially improve weak-to-strong generalization, by reducing overtting to the weak labels and
their errors. Indeed, we see in Figure 13 that the auxiliary condence loss introduced in Section 4.3.2
reduces overtting to weak labels on NLP tasks substantially. For large weak-strong gaps, early
stopping on ground truth (compared to early stopping on weak labels) gives a 15% PGR boost when
using the naive method, but only a roughly 5% PGR boost when using the condence loss.

5.1.2 STUDENT-SUPERVISOR AGREEMENT

Another way to measure imitation is to directly measure the agreement between the student and the
supervisor: the fraction of test inputs where the strong student makes the same prediction as the
weak supervisor. Note that if agreement were 100%, then weak-to-strong accuracy would be equal
to supervisor accuracy, and PGR would be 0.

In general, we notice that for our naive netuning baseline, student-supervisor agreement is consis-
tently high—often noticeably higher than weak supervisor accuracy. This indicates that the student
is imitating some of the supervisor’s errors. These phenomena hold across all tasks (NLP tasks,
chess, and reward modeling) and all model sizes, for the naive method.

The condence loss in Section 4.3.2 reduces student-supervisor agreements signicantly (Figure 8),
primarily by imitating supervisor mistakes less (Figure 8c). The loss encourages the strong student
to make condent predictions, including when they contradict the weak supervisor. In a handful of
the settings where it is most successful, the condence loss reduces student-supervisor agreement
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Figure 8: Student-supervisor agreement decreases with larger student-supervisor gaps; the
condence loss reduces imitation of supervisor mistakes. (a) Student-supervisor agreement as
a function of strong student size on NLP tasks, (b) a but only on samples where the supervisor is
correct, (c) a but only on samples where the supervisor is mistaken. Dotted lines indicate naive
netuning on weak labels, and triangles indicate results with the auxiliary condence loss results
(see Section 4.3). Hue of line indicates size of weak supervisor. For results on reward models, see
Figure 16.

below strong student test accuracy (weak-to-strong performance)—i.e., the resulting model is tting
the ground truth concept better than it is tting the weak labels it was trained with.

5.1.3 INVERSE SCALING FOR IMITATING THE SUPERVISOR

Next, we study student-supervisor agreement as a function strong model size (see Figure 8 and
Figure 16). Surprisingly, we nd inverse scaling (McKenzie et al., 2023): larger student models
consistently agree less with the errors of the supervisor than smaller student models, despite being
trained to imitate the supervisor, not using early stopping, and having larger capacity than smaller
student models.

This trend is especially strong if we evaluate agreement only on datapoints where the supervisor is
wrong (Figure 8c), and the trend persists if looking at cross entropy loss instead of accuracy.

These results suggest that pretrained models may have a hard time tting errors of other (smaller)
pretrained models, at least in netuning settings with relatively limited data. Stanton et al. (2021)
and Furlanello et al. (2018) report a related observation in the context of knowledge distillation: it
is surprisingly hard for models to t the predictions of other models, even when they have sufcient
capacity to do so.

One natural hypothesis is that the nature of (especially naive) weak-to-strong generalization depends
heavily on the error structure of the weak supervisors and how easy those errors are to imitate. In
Appendix E, we show initial experiments that test how different types of weak supervision errors
impact what the strong student learns. Our results suggest that errors that are more difcult for the
student to imitate result in stronger naive weak-to-strong generalization, but that even when they are
easy to imitate, the condence loss can help.

5.2 SALIENCY IN THE STRONG MODEL REPRESENTATIONS

One intuition for when weak-to-strong generalization might be feasible is when the task or con-
cept we want to elicit is internally “salient” to the strong model. In this section, we study several
phenomena related to the saliency of the concepts we are trying to elicit from the student model.

5.2.1 ELICITING STRONG MODEL KNOWLEDGE WITH PROMPTING

One possible reason for the high PGR we observe in Section 4 could be that eliciting what the
strong model knows is easy. In particular, it is possible that strong pretrained models can solve
many relevant tasks zero-shot with a simple prompt.

In Figure 9a, we consider 7 representative NLP tasks and compare netuning, zero-shot prompting,
and 5-shot prompting; for this initial experiment, we use ground truth labels rather than weak labels
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Figure 9: Few-shot prompting becomes competitive with netuning for large models; weak-to-
strong learning is qualitatively similar in the prompting setting. (a) Average zero-shot (single
dashed), 5-shot (double dashed) and netuning (solid) accuracy with ground truth labels as a func-
tion of strong student size. (b) Average 5-shot with weak labels (colored dashed) accuracy as a
function of student model size. Hue of line indicates size of weak supervisor. Zero-shot and 5-shot
same as in panel a. (c) Average weak-to-strong performance for 5-shot prompting (dashed with
crosses), naive netuning (dashed thin) and netuning with the condence loss (solid with triangle)
as a function of student model compute. Results are averaged across 7 NLP tasks. Few-shot weak-
to-strong performance becomes competitive with or outperforms netuning for the largest strong
students, though netuning with the condence loss does better.

for netuning and 5-shot. For both the zero-shot and 5-shot baseline we use task-specic prompts
summarized in Table 2. We nd that zero-shot and 5-shot test accuracy is poor for most model sizes
but, consistent with Brown et al. (2020), improves drastically for larger model sizes. In particular, for
the largest models, 5-shot prompting becomes competitive with netuning on many tasks, indicating
that eliciting the task-relevant knowledge of these very large models is relatively straightforward.

We are also interested in weak-to-strong learning in the context of few-shot prompting. To study
this setting, we construct a few-shot prompt where the labels are provided by the weak supervisor.
We report the results in Figure 9b. Consistent with our ndings in the netuning setting, we get
worse performance when we few-shot prompt with weak labels than we do few-shot prompting
with ground truth labels. This suggests that weak-to-strong learning is a nontrivial problem in the
prompting setting as well.

Similar to the netuning setting, few-shot weak-to-strong performance improves for stronger su-
pervisors. Compared to our weak-to-strong netuning baseline (Figure 9c), weak-to-strong perfor-
mance of few-shot prompting is poor for smaller student models, but becomes competitive or even
outperforms netuning for the largest strong students. However, weak-to-strong netuning with the
condence loss still generally outperforms weak-to-strong few-shot prompting.

Overall, these results provide an important reference for our results on weak-to-strong generaliza-
tion. They suggest that for the largest model sizes, the knowledge needed to solve many task can
be elicited fairly easily with prompting. However, our current setup may be more disanalogous for
prompting than for netuning; many of our NLP tasks may have been implicitly observed during
pretraining, which we conjecture benets prompting more than netuning. We discuss this potential
disanalogy much more in Section 6.1.

5.2.2 GENERATIVE SUPERVISION IMPROVES RM WEAK-TO-STRONG GENERALIZATION

If salient representations of the desired task is useful for weak-to-strong generalization, then we may
be able to improve generalization by increasing the salience of the task to the strong model. One
way to increase the salience of a task without needing ground truth labels is to perform unsupervised
netuning with the language modeling objective on data relevant to that task (Dai & Le, 2015). For
example, by netuning a language model in an unsupervised way on online reviews, sentiment
becomes saliently represented to models internally (Radford et al., 2017).
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Figure 10: Generative netuning on reward modeling data improves weak-to-strong perfor-
mance and PGR. (a) Weak-to-strong performance on the reward modeling task, with (solid lines)
and without (dashed lines) an extra step of generative netuning for the strong student model. Solid
black line shows a strong ceiling reward model that was also trained with the generative netuning
step; dashed black line show a weak supervisor reward model trained without the generative ne-
tuning step. (b) PGR with and without generative netuning. For generative netuning PGR, we
use the strong ceiling performance that also had this extra generative netuning step. Even with this
ceiling adjustment, PGR is higher with an extra generative netuning step.

We test this idea in our reward modeling setting, where it is standard practice to initialize the model
with a baseline netuned on demonstrations of desired behaviors (Stiennon et al., 2020). In our case,
we re-use the ChatGPT comparison data instead of introducing a new supervision dataset. Compar-
isons are comprised of a prex (a single request or conversation between the user and assistant) and
at least two candidate completions. We netune the base models with a language modeling loss on
all prex-completion pairs, ignoring the human preferences between those completions.

Note that these pairs include completions ranked worst by human raters, so this procedure should not
in principle leak any information about the ground truth preference labels that the weak-to-strong
models should not have access to. On the other hand, since the completions can come from humans
or stronger models, there may be some leakage similar in kind to the pretraining leakage that we
discuss as a disanalogy in Section 6.1. Even in this setup, the reward modeling task is highly non-
trivial, and we leave addressing this disanalogy (e.g. by collecting completions only from weaker
models) for future work.

We found that the additional generative netuning on the RM data leads to better weak-to-strong
performance. Because this procedure also improves the performance of models trained on ground
truth RM data, we compare our new weak-to-strong performance to strong “ceiling” models that
were also rst generatively netuned in the same way. Even with this adjusted ceiling, we nd that
generative supervision improves PGR by approximately 10-20%. We report the results in Figure 10.

Furthermore, the improvement from generative netuning stacks with the improvement from ground
truth early-stopping (a “cheating” method to illustrate potential performance if we could optimally
early stop, see Section 5.1.1). When we combine these two techniques, we can achieve PGR of
approximately 30-40%, which would make the results on the RM task competitive with the weak-
to-strong generalization we observe on NLP and chess puzzle tasks.

We can apply the idea of improving task saliency with generative netuning on relevant data to all
settings, and we believe this could be a promising direction for future work.

5.2.3 FINETUNING ON WEAK SUPERVISION TO INCREASE CONCEPT SALIENCY

One possible measure of concept saliency is how linearly represented a task is. In particular, we can
measure the performance of a linear probe (logistic regression classier) trained from frozen activa-
tions of the model. If the optimal solution can be approximately recovered with a linear probe, that
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Figure 11: Finetuning on weak supervisor labels makes the desired generalization more lin-
early represented. We plot test accuracy for ve different strategies, averaged across a subset of
NLP tasks. lp(weak): training a linear probe on the base model using weak labels, lp(gt): training a
linear probe on the base models using ground truth labels, ft(weak): netuning the model on weak
labels, ft(weak) + lp(gt): netuning the model on weak labels then training a linear probe on ground
truth labels, ft(gt): netuning the model on ground truth labels. Finetuning on the weak labels sig-
nicantly increases the linearity of the ground truth concept.

could simplify our problem greatly; we could focus on linear probing methods instead of netuning
methods, which could greatly reduce the search space we need to consider to elicit the desired gen-
eralization. In our work, we focus only on how linearly represented a task is in the nal activations,
prior to the unembedding layer.

In Figure 11, we plot average test accuracy on a subset of our NLP datasets for several different
combinations of (1) netuning or linear probing, using (2) weak or ground truth labels. First, we
show linear probes trained with ground truth labels (72% accuracy on average) perform worse than
netuning with ground truth labels (82% on average), indicating that the optimal solution to most
tasks is not represented completely linearly in the strong model’s nal activations. For comparison,
we also report the results for linear probing and netuning using weak labels, which we verify are
worse than using ground-truth labels.

However, we nd that we can achieve substantially better performance by rst netuning the model
on the weak labels, and then linear probing using the ground truth labels. In other words, when
we netune the strong model with weak labels, the representations become more linear even with
respect to ground truth labels. In fact, netuning on weak labels then linear probing on ground truth
labels results in an accuracy of 78%, closing 60% of the gap between ground truth linear probing
and netuning. This also noticeably outperforms the naive weak-to-strong netuning baseline.

This phenomenon is closely related to a recent nding reported by Kirichenko et al. (2023) in the
spurious cues literature. They nd that netuning a model on biased supervision can result in mod-
els with very biased outputs, but surprisingly strong linear representations of the desired concepts.
These results suggest an alternative approach to improving weak-to-strong generalization. We could
rst “linearize” the desired concept, e.g. by naively netuning on weak labels. Then we could use
simpler linear probe-based weak-to-strong methods to elicit the desired concept.

6 DISCUSSION

In this paper, we proposed a simple analogy for studying a core challenge of aligning superhuman
models and showed that it is feasible to make signicant progress on this problem. However, our
setup still has important disanalogies, which we now elaborate on. We then outline a number of
promising avenues for future work.

6.1 REMAINING DISANALOGIES

Imitation saliency: superhuman models may easily imitate weak errors. Future models will
likely be very good at predicting what humans will think and say, especially if they are trained
on human data in a similar manner to current models. Consequently, if we naively train such a
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superhuman model with human supervision, it might simply imitate the weak supervisor, outputting
human-level capabilities rather than its latent superhuman capabilities (Christiano et al., 2022).

This problem is only partially captured by our setup. While our strong pretrained models do imitate
weak supervisors to some extent, they are not explicitly pretrained to imitate weak models, and our
results from Section 5.1.3 suggest that larger strong models may even have more difculty doing this
imitation. As such, “imitating the weak supervisor” may not be as much of a problem in our setup
as it will be for the ultimate superalignment problem. This may inate generalization performance
today. We believe a more thorough investigation of this problem is an important area for future
work.

Pretraining leakage: superhuman knowledge may be latent, not observable. Many of the
tasks we consider in this work may have been observed in pretraining at least indirectly, for exam-
ple through questions on online forums or through slight reframings of the task. For example, it is
highly likely that simple science questions similar to those in the SciQ NLP task are present in our
GPT-4 series pretraining dataset at least implicitly in some form. However future superhuman mod-
els may never directly observe superhuman alignment-relevant capabilities; these capabilities may
be predominantly “latent”, e.g. learned through self-supervised learning or reinforcement learning
rather than through imitation learning. Intuitively, latent capabilities may be harder to elicit than
capabilities that models could have observed in their pretraining data.

This disanalogy could cause our results to be overly optimistic. We conjecture that this disanalogy
also increases prompting performance (Section 5.2.1) more than it increases netuning performance;
intuitively prompting may work especially well on tasks that the model assigns high probability to
observing. If so, this would make prompting more disanalogous in our setup than netuning. We
hope to test this conjecture in future work.

In Appendix D.1, we show a proof of concept that weak-to-strong generalization can still elicit latent
capabilities that were never explicitly observed during pretraining, and even when prompting is not
possible. In particular, we use AlexNet (Krizhevsky et al., 2012) to supervise models pretrained with
DINO (Caron et al., 2021), a self-supervised method in computer vision that learns strong represen-
tations. We nd that the strong student generalizes signicantly beyond AlexNet’s performance,
even though the student never observed any classication labels during pretraining. Future work
should study and mitigate this pretraining leakage disanology more systematically.

6.2 FUTURE WORK

What would convince us that we have a “solution” to superalignment? This is a complicated question
and we do not claim to have a complete answer. However, we expect substantial progress in at least
the following three areas will be necessary: analogous setups, scalable methods, and strong scientic
understanding. We now sketch out concrete problems for each of these areas.

6.2.1 CONCRETE PROBLEMS: ANALOGOUS SETUPS

Having strong measurements and a reliable methodology is extremely important for making empir-
ical progress in any eld. In particular, it is important that we have metrics which provide strong
signal about whether we are making real progress toward the problem we ultimately care about.
Important directions for follow-up work include:

• Making our setup more analogous by xing the main remaining disanalogies described in
Section 6.1. Analogous setups are essential to ensure that methods that work today will
continue to work for superhuman models.

• Validating that disanalogies are not severe, for example by checking that results are quali-
tatively similar to using e.g. 3rd grade humans to supervise our strongest models today.

• Relaxing some of the simplications we made, e.g. by generalizing our methods and results
to complicated generative tasks.

• Testing how robust our weak-to-strong classiers are to optimization pressure when we
attain high PGR; for example, if we attain good weak-to-strong generalization with RMs,
can we optimize the learned RM using RL?
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• Testing our conjecture that prompting-based methods in our current setup will not be as in-
dicative of future results relative to netuning-based methods (Section 5.2.1), and improvig
our setup to x this.

• Identifying new or more specic disanalogies with our setup and xing them.

Additionally, we do not yet know what future models will look like. We should update our setup
over time as we learn more about how broadly superhuman models will be built.

6.2.2 CONCRETE PROBLEMS: SCALABLE METHODS

One intuition for why major progress on weak-to-strong generalization seems possible is because
all we need to do is extract everything the strong model already “knows” about the task of interest—
the strong model should intuitively already understand the task, and should hopefully have salient
representations of that task. This suggests a number of properties that should be satised by the
desired generalization, and which we may be able to measure without access to ground truth.

• The desired generalization should be able to disagree with the weak supervision when the
weak supervision is wrong. This is a property our auxiliary condence loss may capture.

• The desired generalization should be “natural” or “salient” to the model. For example, we
should not need to change the model too much to elicit the desired concept.

• The desired generalization should be consistent. Consistency properties range anywhere
from basic logical consistency to complicated forms of consistency between many prompts
(e.g. cycle consistency, cross examination, etc.).

Future work should identify additional unsupervised properties that can be used to specify the de-
sired generalization. More generally, there are very likely existing methods in the machine learning
literature (e.g. in semi-supervised learning or robust netuning), which would be natural to try and
which could also lead to substantial gains in weak-to-strong generalization. Generalization-based
approaches to weak-to-strong learning are complementary to scalable oversight methods, in which
the weak supervisor interacts with the strong model to improve the quality of the weak supervision.

6.2.3 CONCRETE PROBLEMS: SCIENTIFIC UNDERSTANDING

We will need an extremely high degree of trust and reliability in our methods for aligning super-
human models in high-stakes settings. We will not get this from strong benchmark performance
alone. Instead, we also need a thorough understanding of precisely when and why our methods
work. Example questions of interest include:

• What explains the difference between the relatively strong results on NLP datasets and the
relatively poor results with reward models when using naive netuning?

• What makes a concept easy or hard to elicit? What is a good denition of “salience”?
• Can we reliably estimate generalization error at test time without any labels? For example,
can we measure the degree of weak-to-strong underspecication (Lee et al., 2022b)?

• Can we reliably extrapolate generalization error across many orders of magnitude using
scaling laws?

• How important are the errors in the weak supervision, precisely? How do different kinds
of weak label biases affect generalization?

• How robust are our proposed methods to optimization pressure?

In Section 5 we only scratched the surface for understanding weak-to-strong generalization, but
future work will need to go much further. An advantage of our setup is that it makes it easy to run
simple experiments to scientically study generalization phenomena across a wide range of settings.

6.3 CONCLUSION

Recent progress in AI has been faster than almost anyone anticipated (Steinhardt, 2022; Bengio
et al., 2023). For an increasing number of researchers, the possibility of superhuman models being
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developed this decade has become increasingly plausible. Broadly superhuman models would be
extraordinarily powerful and, if misused or misaligned with humans values, could potentially cause
catastrophic harm (CAIS, 2022). Given the stakes, we need to establish extremely high reliability in
the alignment of these systems ahead of time. But for years it has been unclear how to empirically
study superhuman model alignment. We believe it is now easier to make progress on this problem
than ever before.
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