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Abstract

An important step in the development of value alignment (VA) systems
in AI is understanding how VA can reflect valid ethical principles. We
propose that designers of VA systems incorporate ethics by utilizing
a hybrid approach in which both ethical reasoning and empirical
observation play a role. This, we argue, avoids committing “naturalistic
fallacy,” which is an attempt to derive “ought” from “is,” and it
provides a more adequate form of ethical reasoning when the fallacy is
not committed. Using quantified model logic, we precisely formulate
principles derived from deontological ethics and show how they imply
particular “test propositions” for any given action plan in an AI rule
base. The action plan is ethical only if the test proposition is empirically
true, a judgment that is made on the basis of empirical VA. This permits
empirical VA to integrate seamlessly with independently justified ethical
principles.

1 Introduction

Artificial intelligence (AI) technologies increasingly replace human decision
makers. Worries rise about the compatibility of AI and human values. A
growing number of researchers are examining how AI can acquire moral
intelligence (Wallach and Allen, 2008; Burton et al., 2017; Walsh et al., 2019;
Lin et al., 2011; Bringsjord, 2013; Scheutz and Arnold, 2016; Arnold et al.,
2017; Arnold and Scheutz, 2018). Such attempts are recently lumped under
the term “value alignment” (hereafter VA). Russell et al. (2015) highlight
the need for VA and identify two options for achieving it:
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“[A]ligning the values of powerful AI systems with our own values
and preferences ... [could involve either] a system [that] infers
the preferences of another rational or nearly rational actor by
observing its behavior ... [or] could be explicitly inspired by the
way humans acquire ethical values.”

As this passage suggests, one option for VA is to teach machines human
preferences, and another is to teach machines ethics. The word “values” in
fact has this double meaning. It can refer to what humans value in the sense
of what they see as subjectively preferable, or it can refer to reasonably
defensible ethical principles. The distinction is important, because we acquire
knowledge of the two types of values in different ways.

A similar distinction occurs in previous literature under the names top-
down and bottom-up VA (Allen et al., 2000; Allen, 2002; Allen et al., 2005,
2006; Wallach and Allen, 2008; Wallach et al., 2008). Russell et al. suggest
a bottom-up approach in the form of inverse reinforcement learning, which
allows a machine to internalize a pattern of preferences by observing how
humans actually behave (Abbeel and Ng, 2004; Ng and Russell, 2000).
Reinforcement learning, and machine learning (ML) in general, offer a number
of advantages but must deal with such issues as inadequate reward functions
to represent complex ethical norms, biased data, and opaqueness (Arnold
et al., 2017; Prince and Pinker, 1988; Marcus, 2018). A promising alternative
to ML is logic-based VA, which has received less attention despite having a
long research record (Arkoudas et al., 2005; Bringsjord et al., 2006; Bringsjord
and Taylor, 2012; Bringsjord, 2017; Govindarajulu and Bringsjord, 2017;
Hooker and Kim, 2018).

In this paper, we make a case for hybrid VA that combines ML-based
and logic-based approaches. A logic-based approach is especially important
because it allows the use of “independently justified” or “independently
defensible” ethical principles. By these we mean principles that find their
justification in ethical theory. Such principles are “normative” in the sense
commonly used by moral philosophers: they are prescriptive rather than
descriptive and are elements of traditional normative moral theories such
as deontology, consequentialism and virtue ethics. Such principles are
increasingly discussed as candidates for computational use (Lindner and
Bentzen, 2018; Lindner et al., 2020; Ganascia, 2007). Independently justified
principles avoid many problems, including those associated with the well-
known is-ought gap, one aspect of which is reflected in the unconscious biases
now widely studied by behavioral ethicists (Bazerman and Tenbrunsel, 2011).
In turn, we propose our own version of deontological VA for use in such a
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Table 1: Comparison of ML-based and logic-based VA

ML-based Logic-based

Theory of mind Connectionism Computationalism

Base discipline Statistics Logic

AI techniques
Machine learning
(automated statistics, deep learning)

Symbolic AI
(i.e., GOFAI: Good Old Fashioned AI)

Value alignment Bottom-up Top-down

Example

ML system trained by lay people’s
perception of fairness regarding
autonomous vehicles and
gender/racial discrimination.

Formalized normative principles
(e.g., double effect theory, categorical
imperatives) using symbolic logic
(e.g., quantified modal logic)

Dual process
theory

System 1 System 2

hybrid approach.
After elaborating on why a purely ML-based approach is inadequate, we

show how symbolic logic enables the introduction of deontological reasoning
into machine ethics. Rather than opting for a particular version of moral
theory, we attempt to develop a comprehensive, ecumenical framework of
ethical principles (Parfit, 2011). We first articulate univeralization, utilitarian,
and autonomy-based principles in the idiom of quantified modal logic. We
then use these principles to derive test propositions, also formulated in modal
logic, for each action specified by an AI rule base. The action is ethical only
if the test propositions are empirically true, a judgment that can be based on
machine learning and empirical VA. This permits empirical VA to integrate
seamlessly with independently justified ethical principles.

2 Two different value alignment systems

AI is an imitation game. It imitates the human mind. Because more than one
theory of mind is possible, different models of AI are are also possible, and
so too, different models of VA. Broadly speaking, two categories of VA stand
out, ML-based and logic-based, although neither is instantiated perfectly in
any given working AI system (Table 1).

ML-based VA is connectionist. Connectionism holds that human intelli-
gence can be explained and imitated by using artificial neural nets consisting
of three kinds of connected units: input, hidden and output (Buckner and
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Garson, 2019). Deep Learning (DL) exemplifies connectionism by utilizing
a complex “automated statistics” based on a large number of hidden and
opaque heuristics using associations (Danks, 2014). ML’s major advantage,
which is especially obvious in an end-to-end model such as DL, is its powerful
ability to imitate and further strengthen skill sets in training data. DL has
illustrated the power of connectionist models by capably learning human skills,
especially in the domain of pattern recognition, face recognition, medical
diagnostic systems, and text reading.

2.1 The is-ought gap and the problem of bounded ethicality

Since connectionist systems are inductive, the quality of ML-based VA relies
heavily on that of inputs. If training data is biased or unethical, the system
will generate well-imitated, undesirable outputs. Microsoft’s AI-based chatter-
bot Tay (an acronym for “thinking about you”) was designed to engage
with people on Twitter and learn from them how to carry on a conversation.
When some people started tweeting racist and misogynistic expressions, Tay
responded in kind. Microsoft immediately terminated the experiment (Wolf
et al., 2017). Most algorithmic bias problems we see now are results of
ML-based VA, which uses data sets from humans who already have implicit
or explicit biases.

These mistakes reflect an error well-known to moral philosophers, the
problem of deriving an “ought” from an “is,” sometimes called the “natu-
ralistic fallacy.” From the fact that people behave in racist ways, it cannot
follow that people ought to behave in such ways. While not a formal fallacy,
the violation of the is-ought gap signals a form of epistemic näıveté, one
that ignores the axiom in normative ethics that “no justifiable ‘ought’ can
be derived directly from an ‘is’.” Disagreements about the robustness of the
fallacy abound (Donaldson, 1994, 2012; Pigden, 2016; Woods and Maguire,
2017), and so this paper adopts a modest, workable interpretation of the
is-ought gap coined recently by Daniel Singer, namely, “There are no valid
arguments from non-normative premises to a relevantly normative conclusion”
(Singer, 2015). Descriptive (or naturalistic) statements are reportive of what
states of affairs are like, whereas normative statements are stipulative and
action-guiding. Examples of the former are “The grass is green” and “Many
people find deception to be unethical.” Examples of the latter are “You ought
not murder” and “Lying is unethical.” Normative statements usually figure
in the semantics of deontic (obligation-based) or evaluative expressions such
as “ought,” “impermissible,” “wrong,” “good,” “bad,” or “unethical.” One
may object that a high-level domain-general premise such as “machines ought
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to have our values no matter what” might successfully link a descriptive
premise to a normative conclusion. This objection is correct, but allows the
original problem to pop up again at a deeper level. “What facts,” one might
ask, “justify the conclusion that machines ought to imitate perfectly our
behaviors?”

Using data from “unbiased” people’s behaviors seems an obvious solution,
but the problem is more complicated than one thinks. The preceding decade
of research in behavioral ethics has shown the existence of various pernicious
influences on ethical decisions, often at an unconscious level. When these
influences lead to unethical behavior that conflict with an actor’s moral beliefs
and commitments (Moore et al., 2006), the phenomenon is often referred to
as “bounded ethicality”(Bazerman, 2011; Bazerman and Tenbrunsel, 2011;
Chugh et al., 2005; Tenbrunsel, 2005). One example of bounded ethicality is
“ordinary prejudice,” which reveals itself in implicit associations about gender,
race, and other demographic groups (Bertrand et al., 2005; Green et al., 2007;
Greenwald et al., 2009; Rudman and Ashmore, 2007). These associations
can lead to unintentionally discriminatory results, such as discriminatory
hiring practices and unwarranted discrepancies in the evaluation of the skills
and competencies of workers. Other elements of bounded ethicality include
“in-group favoritism,” “self-serving bias,” and “motivated blindness,” the
last of which refers to a systemic but unconscious failure to notice unethical
behavior in oneself or others even when it is in one’s financial interest to do
so (Bazerman and Moore, 2011; Moore et al., 2010). One might consider
using professional moral philosophers’ opinions as training data for ML-based
VA (Anderson and Anderson, 2011), but recent research shows both expert
judgment generally and ethical expert judgment in particular to be frequently
biased. Professional ethicists’ moral intuitions and specific judgements turn
out to be as vulnerable to biases or irrelevant factors as those of lay persons
(Schwitzgebel and Cushman, 2012; Wiegmann et al., 2020; Tobia et al.,
2013; Schwitzgebel and Cushman, 2015; Egler and Ross, 2020). Because any
attempt to use the ML-based VA system to generate the principles would
be viciously circular, ML-based systems stand in need of independently
defensible principles in order to evaluate even the training data to be used.

Logic-based VA is distinct from the ML-based in several ways. It is
analogous to computationalism, in which human intelligence operates as a
computer does, or in other words, in step with a set of systematic, abstract,
symbol-and-rule mechanisms that are transparently expressed with formal-
symbolic logic (Rescorla, 2020; Scheutz, 2002). Due to the popularity of ML
systems, logic-based systems are sometimes referred to as GOFAI (“good
old-fashioned AI”) (Haugeland, 1985). But logic-based AI is still widely
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used, for instance, in the driving mechanisms of autonomous drones or
cars, even though the pattern recognition mechanisms in these applications
are primarily based on ML systems. Logic-based approaches are especially
useful when formalizing independently defensible ethical principles of the
sort invoked by professional philosophers. Such logic-based systems are
sometimes labeled symbolic AI. Interestingly enough, formal logic is one of a
few languages shared by both computer scientists and moral philosophers.
Unlike eliminative (pure) connectionist systems, logic-based VA relies not on
associations, but on deductive logic and logical proofs.

2.2 The problem of System 2 and systematicity

From a psychological perspective, ML systems are relevantly similar to
what dual process theory (Kahneman, 2011) knows as “System 1” (Chauvet,
2018; Geffner, 2018; Rossi and Loreggia, 2019). It is opaque, fast, and
intuitive to use. Dual process theory frames the human mind in terms of
two distinctive processes: System 1 and System 2. In contrast to System 1
thinking, System 2 thinking is slow, transparent, analytical, logical, reasons-
responsive and computational. Research shows that unethical and biased
decisions are correlated with System 1 thinking, and that shifting the mode
to System 2 thinking is often an effective way to avoid unethical behaviors
(Bazerman and Gino, 2012; Bazerman and Sezer, 2016; Zhang et al., 2015;
Sezer et al., 2015). This is despite the fact that System 1 thinking can be
useful in other domains where intuitive associations are useful, such as in
making heuristic decisions.

Because ML systems draw upon System 1 behavior, ML-based VA can
be inherently vulnerable to unethical decision making. The “systematicity”
challenge, neglected by connectionists for decades (Calvo and , eds.; Lake and
Baroni, 2018; Alhama and Zuidema, 2019; Geffner, 2018; Marcus, 2001), sheds
further light on this. In 1988, linguistic philosophers (Fodor and Pylyshyn,
1988) argued that connectionism confuses the intrinsically systematic nature
of thought with a system of associations. More specifically, they argued that
thoughts—e.g., “Mary loves John”—must involve operations with a set of
rules (e.g., syntactic and semantic combinatorial relations or grammars). Pure
or eliminative connectionist systems, which rely exclusively on associations,
lack the ability to employ rules, and this seriously limits their ability to
explain human thinking. A human who can think “Mary loves John” can
also think “John loves Mary,” but purely connectionist systems trained by
connectionist methods cannot systematically do the latter without further
resources. Responding to this challenge, many connectionists have attempted
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to show that structured ML systems might be redesigned, but the attempts
underscore the eventual need for pure or eliminative ML systems that employ
rule-like structures.

Our purpose here is not to adjudicate this debate. However, the debate
itself reveals the need for connectionist systems to be used within their
legitimate scope. In that sense, our view is roughly consistent with that of
Paul Smolensky who responded to the systematicity challenge in his article,
“On the proper treatment of connectionism (PTC)” (1988). Similar to dual
process theory, Smolensky’s “proper treatment of connectionism” construes
human intelligence in terms of two distinct realms: on the one hand, there
is “cultural knowledge” (e.g., formalized knowledge presented by symbols
and rule-like logic), and on the other, there is “individual knowledge” (e.g.,
perception, intuitive processing). Connectionist systems are adequate for the
latter, but not the former. The proper treatment of connectionism entails
that computational systems are necessary but insufficient for language-like
processing because human language operates against a backdrop of empirical,
common-sensical knowledge which, in turn, allows rules themselves to make
sense.

This broad point is especially relevant for moral thought, in which the
“reasoning” portion of moral thinking relies upon systemic operations instead
of associations. A person who can reason, “It is wrong for Jane to gratuitously
lie to Mary” can also reason “It is wrong for Mary to gratuitously lie to Jane”
or “It is not wrong for . . . .” Moral reasoning is fundamentally rule-based. It
can be said that a person who concludes “It is wrong for Jane to lie to Mary”
uses a rule such as “It is wrong for agent x to gratuitously lie to someone”
and an empirical premise, “Jane gratuitously lies to Mary.”1

3 Related work

Bringsjord and his collaborators (Bringsjord et al., 2006; Bringsjord and
Taylor, 2012; Bringsjord, 2017; Arkoudas et al., 2005; Govindarajulu and
Bringsjord, 2017) are the first we know to use deontic logic to explicitly
represent philosophically justifiable ethical principles such as the doctrine of
double effect. Our approach dovetails with that of Bringsjord in identifying
the importance of deontic logic for teaching right and wrong to machines.

1Moral particularism criticizes rule-based ethical theory, but grants easily that rules
are used in moral reasoning, even as it critiques a one-size-fits-all approach. Interestingly,
a rule-based or logic-based ethical theory is not committed to to a rigorous one-size-fits-all
approach (Smith and Dubbink, 2011).
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Since his pioneering work, many others have attempted to represent ethical
principles using deontic logic. These contributions reveal the versatility of
deontic logic when formalizing not only deontological moral theory but other
traditions, such as areteic theory (including virtue ethics) and commandment
theory.

Our work is consistent with the established deontic tradition in moral
philosophy that uses deontic logic to formalize deontological moral theory.
Rather than opting for a particular version of moral theory, we attempt to
develop a comprehensive, ecumenical framework of ethical principles(Parfit,
2011). We offer a deontological representation of three central ethical
traditions, using a generalization principle, an autonomy principle, and a
deontic utility principle. Using deontology, we indicate in outline how ethical
obligations can be derived from first principles instead of relying on conflicting
moral intuitions of what seems fair or unbiased. While ethical philosophy
has been viewed as vague and subjective by the popular imagination, the
deontological approach to moral philosophy is known for offering a rigorous
foundation.

Allen et al. first suggested a hybrid approach to VA and recommended
combining top-down and bottom-up approaches. Although their distinction
can be more broadly construed, a typical top-down approach installs ethical
principles directly into the machine, while a bottom-up approach typically
asks the machine to learn prescriptive norms from experience. From an
epistemological perspective, the typical bottom-up VA approach can result in
teaching strategies that sometimes conflate “is” and “ought.” For example,
one might suggest that a machine might learn ethics through a simulated
process of evolution (Conitzer et al., 2017). The fact that certain ethical
norms evolve does not imply that they are valid ethical principles (Berker,
2009; Nagel, 1979; McDowell, 1995; Rachels, 1990). It is true that bottom-up
approach does not automatically commit the naturalistic fallacy, particularly
if ethical principles validate the norms learned in this fashion (Wallach and
Allen, 2008). Nonetheless, in our approach to hybrid VA, bottom-up learning
does none of the normative work, but is used only to evaluate the truth of
test propositions derived from ethical principles.

Another version of a hybrid approach to VA is advocated by Arnold
et al., p. 81 who argue, “architectures must explicitly represent legal, ethical
and moral principles,” while using them as principles for decision-making in
order to achieve predictable decisions on the part of the system. Systems
that uphold those principles as much as possible represent a more ethical
path than systems that are less transparent less accountably trained, and
less easily corrected.” We largely agree with these authors, and our efforts
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are indebted to their insightful criticism of the IRL-based VA. Arnold et al.
suggest that the problems in the IRL approach can be significantly addressed
by an hybrid approach in which explicitly written ethical rules can be imposed
as constraints on what a machine learns from observation through IRL. We
follow this very path by developing deontological principles as constraints,
realizing nonetheless that one must ask precisely what remains within the
unconstrained space of observational learning. If what remains is learning
that includes ethical norms, then once again we confront the is-ought gap.
If, on the other hand, it is learning that includes empirical facts about the
world, then those facts alone cannot be transformed into “oughts.”

It is with this in mind that we offer a hybrid approach to VA that
integrates independently justified ethical principles from the deontological
tradition in ethics (Korsgaard, 1996; Nagel, 1986; O’Neill, 2014) with factual
knowledge acquired through ML technology. Relevant facts may include
observed preferences and values, but even such value-relevant facts cannot
be the source of ethical principles.

Applying the imperative, “Thou shalt not kill,” to a given action requires
at a minimum that someone knows the facts relevant to the action (Hare,
1991). The relevant facts, which may include observations of human values
and preferences, do not by themselves decide what is ethical, but they factor
into ethical assessment. In addition, action decisions almost always take the
form, “If the facts are such-and-such, then do A,” which we refer to as an
action plan. This provides a clue as to how VA can knit together empirical
observation and ethical principles. The factual information in an action plan
can be merged with ethical imperatives that depend on factual circumstances
to arrive at an ethical judgment. The next section describes in detail how
this can be accomplished.

4 Integrating ethical principles and empirical VA

We now show how deontologically derived ethical principles can combine with
empirical facts in a systematic way. An adequate exposition of deontological
reasoning is far beyond the scope of this paper, and we do not attempt to
defend the specific ethical principles we have chosen, although we briefly
explain why we think they are reasonable. Relevant literature is cited for
readers who wish to study the underlying arguments in detail. Our purpose
here is only to show how a careful statement of ethical principles clarifies
how these principles can interrelate with empirical observation in VA.

We argue that expressing ethical assertions in the idiom of quantified
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modal logic, as developed in Hooker and Kim (2018), makes the relationship
between ethical principles and empirical observation perspicuous. Specifically:
ethical principles imply certain logical propositions that must be true in order
for a given action plan to be ethical, and empirical observation determines
whether these propositions are, in fact, true. We refer these propositions as
test propositions, whose empirical evaluation typically requires observation of
human values, beliefs, and behavior. The test propositions need not appear
alongside the action plans in an AI system, but they can be generated and
evaluated automatically if desired (Section 4.5).

Thus the role of ethics in hybrid VA is to derive necessary conditions for
the rightness of specific actions, and the role of empirical VA is to ascertain
whether these conditions are satisfied in the real world.

4.1 Actions and Reasons

Deontology derives ethical principles from the logical structure of action
(Kant, 1785; Wood, 1999; O’Neill, 2014; Hooker and Kim, 2019). It begins
with the necessity of distinguishing free action from mere behavior, insofar
as causally speaking, both are determined by chemical and physical forces.
Contemporary deontological thinkers usually base the distinction between
free and causally determined behavior on a Kantian dual standpoint theory of
ethics that identifies free action as behavior for which the agent has reasons
(Bilgrami, 1996; Korsgaard, 1996; Nagel, 1986; Nelkin, 2000). Such reasons
are not themselves psychological causes or motivations, but considerations
that the agent consciously makes to justify a choice. The reasons need not
be good or convincing ones from another agent’s perspective, but must be
sufficiently coherent to serve as an explanation of why the agent chose the
action.

Ethical principles are necessary conditions for the coherence or intelligibil-
ity of the reasons behind an action. While a number of necessary conditions
for coherence are possible, ethical principles rest on the universality of reason:
an agent who takes a set of reasons as justifying an action must in order to
be consistent take the reasons as justifying the same action for any agent to
whom those reasons apply.

We focus on the three ethical principles that have been most intensely
studied in the literature—generalization, utility maximization, and respect
for autonomy. Each states a necessary condition for ethical conduct. We
make no claim that they are exhaustive, but only that they illustrate how
empirical VA can be anchored by ethical principles.

Before proceeding, two caveats are in order. First, in this paper we
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do not attempt to convince readers of the superiority of the deontological
tradition or its premise that principles can be discovered through an analysis
of the logical structure of action. Our aim is more modest: to show that
deontology is particularly suitable for hybrid VA. Two of the three principles
we employ, generalization and respect for autonomy, have historical roots in
Kant’s The Formula of the Universal Law and The Formula of Humanity
(Wood, 1999), although our formulations of them differ. Second, we also use
a deontic model of utilitarianism (e.g., Cummiskey, 1996) in order to make
utilitarianism consistent with the other two other principles.

4.2 Generalization Principle

The universality of reason leads immediately to the generalization principle:
a rational agent must believe that his/her reasons for acting are consistent
with the assumption that all rational agents to whom the reasons apply could
engage in the same actions (O’Neill, 2014; Wood, 1999).

As an example, suppose I see wristwatches on open display in a shop
and steal one. My reasons for the theft are that I would like to have a new
watch, and that I can get away with taking one.2 At the same time, I cannot
rationally believe that I would be able to get away with the theft if everyone
stole watches when these reasons apply. The shop would install security
measures to prevent theft, which is inconsistent with one of my reasons for
stealing the watch. The theft therefore violates the generalization principle.

To give these ideas more precision, we express the action plan and
generalization principle in the language of quantified modal logic. In so
doing, we do not define a deductive system or propose formal semantics, as
they are unnecessary for our project. We merely borrow logical notation
in order to allow a more rigorous formulation and application of ethical
principles.

The decision to steal a watch can be expressed in logical notation as
follows. Define predicates

C1(a) = Agent a would like to possess an item on
display in a shop.

C2(a) = Agent a can get away with stealing the item.
A1(a) = Agent a will steal the item.

2In practice, the reasons for theft are likely to be more complicated than this. I may be
willing to steal partly because I believe the shop can easily withstand the loss, no employee
will be disciplined or terminated due to the loss, I will not feel guilty afterward, and so
forth. But for purposes of illustration we suppose there are only two reasons.
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Because the agent’s reasons are an essential part of moral assessment, we
evaluate the agent’s action plan, which states that the agent will take a
certain action when certain reasons apply. In this case, the action plan is(

C1(a) ∧ C2(a)
)
⇒a A1(a) (1)

Here ⇒a is not logical entailment but indicates that agent a regards C1(a)
and C2(a) as justifying A1(a). The reasons in the action plan should be the
most general set of conditions that the agent takes as justifying the action.
Thus the action plan refers to an item in a shop rather than specifically to a
watch, because the fact that it is a watch is not relevant to the justification;
what matters is whether the agent wants the item and can get away with
stealing it.

We can now state the generalization principle using quantified modal logic.
Let C(a)⇒a A(a) be an action plan for agent a, where C(a) is a conjunction
of the reasons for taking action A(a). The action plan is generalizable if and
only if

�aP
(
∀x

(
C(x)⇒x A(x)

)
∧ C(a) ∧A(a)

)
(2)

Here P (S) means that it is possible for proposition S to be true, and �aS
means that a can rationally believe S. The proposition �aS is equivalent
to ¬�a¬S, where �a¬S means that rationality requires require a to deny
S.3 Thus (2) says that agent a can rationally believe that it is possible for
everyone to have the same action plan as a, even while a’s reasons still apply
and a takes the action.

Returning to the theft example, the condition (2) becomes the test
proposition for action plan (2):

�aP
(
∀x

(
C1(x) ∧ C2(x)⇒x A1(x)

)
∧ C1(a) ∧ C2(a) ∧A1(a)

)
(3)

This says that it is rational for a to believe that it is possible for the following
to be true simultaneously: (a) everyone steals when the stated conditions
apply, and (b) the conditions apply and a steals. Since (3) is false, action
plan (1) is unethical.

The necessity of (3) for the rightness of action plan (1) is anchored in
deontological theory, while the falsehood of (3) is a fact about the world.
This fact might be inferred by collecting responses from shop owners about
how they would react if theft were widespread. Thus ethics and empirical VA

3The operators � and � have a somewhat different interpretation here than in traditional
epistemic and doxastic modal logics, but the identity �S ≡ ¬�¬S holds as usual.
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work together in a very specific way: ethics tells us that the test proposition
(3) must be true if the theft is to be ethical, and empirical VA provides
evidence that bears on whether (3) is true.

An action plan in the autonomous vehicle domain might be

C3(a)⇒a A2(a) (4)

where

C3(a) = An ambulance under the control of agent a can reach its
destination sooner by using siren and lights.

A2(a) = Agent a will direct an ambulance to use siren and lights.

Agent a is the ambulance driver, or in the case of an autonomous vehicle,
the designer of the software that controls the ambulance. The generalization
principle yields the test proposition

�aP
(
∀x

(
C3(x)⇒y A2(x)

)
∧ C3(a) ∧A2(a)

)
(5)

This says that it is rational for agent a to believe that siren and lights
could continue to hasten arrival if all ambulances used them for all trips,
emergencies and otherwise. If empirical VA reveals that most drivers would
ignore siren and lights if they were universally abused in this fashion, then
we have evidence that (5) is false, in which case action plan (4) is unethical.

4.3 Maximizing Utility

Utilitarianism is normally understood as a consequentialist theory that
evaluates an act by its actual consequences. Specifically, an act is ethical
only if it maximizes total net expected utility across all who are affected.
Yet the utilitarian principle can also be construed in a deontological fashion
(Cummiskey, 1996), which allows it to be interpreted as requiring the agent
to select actions that the agent can rationally believe will maximize utility.
While utilitarians frequently view utility maximization as the sole ethical
principle, it can be seen as an additional necessary condition for an ethical
action. The other non-utilitarian principles remain in force because only
actions that satisfy the other principles are considered options for maximizing
utility.

In a deontological analysis, utility is not what people generally value
but what the agent is rationally committed to valuing. The logic of means
and ends requires that the agent regard some end as intrinsically valuable
(such as happiness), and the universality of reason requires that it be seen
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as valuable for any agent. A utilitarian believes this commits the agent to
selecting actions that maximize the expected net sum of utility over everyone
who is affected.4

The utilitarian principle can be formalized by requiring that a given
action plan create at least as much utility as any other available action
plan. Let u(C(a), A(a)) be a utility function that measures the total net
expected utility of action A(a) under conditions C(a). Then an action plan
C(a)⇒a A(a) satisfies the utilitarian principle only if agent a can rationally
believe that action A(a) creates at least as much utility as any ethical action
that is available under the same circumstances. This can be written

�a∀A′
(
E
(
C(a), A′(a)

)
→ u

(
C(a), A(a)

)
≥ u

(
C(a), A′(a)

))
(6)

where A′ ranges over actions. The predicate E(C(a), A′(a)) means that
action A′(a) is available for agent a under conditions C(a), and that the
action plan C(a) ⇒a A′(a) is generalizable and respects autonomy.5 Note
that we are now quantifying over predicates and have therefore moved into
second-order logic.

Popular views about acceptable behavior frequently play a role in appli-
cations of the utilitarian principle. For example, in some parts of the world,
drivers consider it wrong to enter a stream of moving traffic from a side
street without waiting for a gap in the traffic. In other parts of the world this
can be acceptable, because drivers in the main thoroughfare expect it and
make allowances. Suppose driver a’s action plan is (C4(a)∧C5(a))⇒a A3(a),
where

C4(a) = Driver a wishes to enter a main thoroughfare.
C5(a) = Driver a can enter a main thoroughfare by moving

into the traffic without waiting for a gap.
A3(a) = Driver a will move into traffic without waiting

for a gap.

As before, driver a is the designer of the software if the vehicle is autonomous.
Using (6), the driver’s action plan maximizes utility only if the following test

4Alternatively, one might argue that maximizing the minimum utility over those affected
(or achieving a lexicographic maximum) is the rational way to take everyone’s utility into
account, after the fashion of John Rawls’s difference principle (Rawls, 1971). Or one might
argue for some rational combination of utilitarian and equity objectives (Karsu and Morton,
2015; Hooker and Williams, 2012). However, for many practical applications, simple utility
maximization appears to be a sufficiently close approximation to a “rational” choice, and
to simplify exposition we assume so in this paper.

5For “respecting autonomy,” see the next section.
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proposition is true:

�a∀A′
(
E
(
C4(a), C5(a), A′(a)

)
→

u
(
C4(a), C5(a), A3(a)

)
≥ u

(
C4(a), C5(a), A′(a)

)) (7)

Suppose we wish to design driving policy in a context where pulling immedi-
ately into traffic is considered unacceptable. Then doing so is a dangerous
move that no one is expecting, and an accident could result. Waiting
for a gap in the traffic results in greater net expected utility, or formally,
u(C4(a), C5(a), A3(a)) < u(C4(a), C5(a), A4(a)), where A4(a) is the action
of moving into traffic after waiting for a gap. So (7) is false, and its
falsehood can be inferred by collecting popular views about acceptable
driving behavior. Observed preferences and values are therefore relevant to
an ethical assessment, but they alone do not determine the assessment.

Again we have a clear demonstration of how ethical principles can combine
with empirical VA. The utilitarian principle tells us that a particular action
plan is ethical only if test proposition (7) is true, and empirical VA tells us
whether (7) is true.

A similar approach can accommodate other situations in which popular
expectations bear on ethical decisions. For example, it has been observed that
people may expect different ethical norms to be followed by machine agents
than by humans (Malle et al., 2015). This could affect generalizability as well
as a utilitarian assessment, because there may be different implied promises
or agreements concerning machines than humans. Yet again, expectations
alone do not determine the ethical outcome.

4.4 Respect for Autonomy

A third ethical principle requires agents to respect the autonomy of other
agents. Specifically, an agent should not adopt an action plan that the agent
is rationally constrained to believe is inconsistent with an ethical action
plan of another agent, without informed consent. Murder, enslavement, and
inflicting serious injury are extreme examples of autonomy violations because
they interfere with many ethical action plans. Coercion may or may not
violate autonomy, depending on precisely how action plans are formulated.6

6A more adequate analysis leads to a principle of joint autonomy, according to which it
is violation of autonomy to adopt an action plan that is mutually inconsistent with action
plans of a set of other agents, when those other action plans are themselves mutually
consistent. Joint autonomy addresses situations in which an action necessarily interferes
with the action plan of some agent but no particular agent, as when someone throws a
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The argument for respecting autonomy is basically as follows. Suppose I
violate someone’s autonomy for certain reasons. That person could, at least
conceivably, have the same reasons to violate my autonomy. This means that,
due to the universality of reason, I am endorsing the violation of my own
autonomy in such a case. This is a logical contradiction, because it implies
that I am deciding not to do what I decide to do. To avoid contradicting
myself, I must avoid interfering with other action plans.

To formulate an autonomy principle, we say that agent a’s action plan
C(a)⇒a A(a) is consistent with b’s action plan C ′(b)⇒b A

′(b) when

�aP (
A(a) ∧A′(b)

)
∨ ¬�aP

(
C(a) ∧ C ′(b)

)
(8)

This says that agent a can rationally believe that the two actions are mutually
consistent, or can rationally believe that the reasons for the actions are
mutually inconsistent. The latter suffices to avoid inconsistency of the action
plans, because if the reasons for them cannot both apply, the actions can
never come into conflict.

As an example of how coercion need not violate autonomy, suppose agent
b wishes to catch a bus and has decided to cross the street to a bus stop,
provided no traffic is coming. The agent’s action plan is(

C6(b) ∧ C7(b) ∧ ¬C8(b)
)
⇒b A5(b) (9)

where

C6(b) = Agent b wishes to catch a bus.
C7(b) = There is a bus stop across the street from b.
C8(b) = There are cars approaching b.
A5(b) = Agent b will cross the street.

Agent a sees agent b begin to cross the street and forcibly pulls b out of the
path of an oncoming car that b does not notice. Agent a’s action plan is(

C8(b) ∧ C9(b)
)
⇒a A6(a, b) (10)

where

C9(b) = Agent b is about to cross the street.
A6(a, b) = Agent a will prevent agent b from crossing the street.

bomb into a crowd. A general formulation of the joint autonomy principle in terms of
modal operators is given in Hooker and Kim (2018). This and other complications are
discussed in Hooker (2018).
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Agent a does not violate agent b’s autonomy, even though there is coercion.
Their action plans (9) and (10) are consistent with each other, because the
condition (8) yields the test proposition

�aP (
A5(b)∧A6(a, b)

)
∨ ¬�aP

(
C6(b)∧C7(b)∧¬C8(b)∧C8(b)∧C9(b)

)
(11)

This means that either (a) agent a can rationally believe that the two actions
are consistent with each other, or (b) agent a can rationally believe that the
antecedents of (9) and (10) are mutually inconsistent. As it happens, the
two actions are obviously not consistent with each other, and so (a) is false.
However, agent a can rationally believe that the antecedents of (9) and (10)
are mutually inconsistent, because C8(b) and ¬C8(b) are contradictory. This
means (b) is true, which implies that condition (11) is satisfied, and there is
no violation of autonomy.

Again, this clearly distinguishes the roles of ethics and empirical observa-
tion in VA. Ethical reasoning tells us that the test proposition (11) must be
true if autonomy is to be respected, whereas observation of the world tells us
whether (11) is true.

In saying that coercion can be ethical, we do not imply that a violation
of autonomy can be ethical. Coercion must be consistent with the coerced
agent’s action plan, as in the above example. Coercion can also be ethical
when there is implied or informed consent, or when it is necessary to prevent
unethical behavior, as in self-defense.7

To illustrate how autonomy may play a role in the ethics of driving,
suppose that a pedestrian b dashes in front of a’s rapidly moving car. Driver
a can slam on the brake and avoid impact with the pedestrian, but another
driver c is following closely, and a sudden stop could cause a crash. The
driver a must choose between two possible action plans:(

C10(a, b) ∧ C11(a, c)
)
⇒a A7(a) (12)(

C10(a, b) ∧ C11(a, c)
)
⇒a ¬A7(a) (13)

7Coercion can be ethical when there is informed consent to a risk of interference, because
giving informed consent is equivalent to including the possibility of interference as one of
the antecedents of the action plan. This occurs, for example, when a medical test subject
gives consent with the knowledge that an experimental drug may cause illness, even though
administering a drug that turns out to be harmful is a form of coercion. Interfering with
an unethical action plan is no violation of autonomy because an unethical action plan is,
strictly speaking, not an action plan due to the absence of a coherent set of reasons for
undertaking it. An action plan is considered unethical in this context when it violates the
generalization or utility principle, or interferes with an action plan that does not violate one
of these principles, and so on recursively. Thus coercion is ethical in an act of self-defense,
or to stop someone from unethically harming others.

17



where

C10(a, b) = Pedestrian b is dashing in front of a’s car.
C11(a, c) = Driver c is closely following a’s car.
A7(a) = Agent a will immediately slam on the brake.

Meanwhile, the pedestrian b has any number of action plans that are clearly
inconsistent with death or serious injury. Let C12(b) ⇒b A8(b) be one of
them. Also driver c of the other car (there is only one occupant) has action
plans that are inconsistent with an injury. We suppose that C13(c)⇒c A9(c)
is one of them.

We first check whether hitting the brake, as in action plan (12), is
inconsistent with the other driver’s action plan C13(c)⇒c A9(c). The test
proposition is

�aP (
A7(a) ∧A9(c)

)
∨ ¬�aP

(
C10(a, b) ∧ C11(a, c) ∧ C13(c)

)
(14)

The first disjunct is clearly true, because a can rationally believe that it
is possible that hitting the brake is consistent with avoiding a rear-end
collision and therefore with any planned action C13(c)⇒c A9(c), even if this
is improbable. So action plan (12) does not violate joint autonomy.

We now check whether a failure to hit the brake, as in action plan (13),
is inconsistent with the pedestrian’s action plan C12(b)⇒b A8(b). There is
no violation of autonomy if

�aP (
¬A7(a) ∧A8(b)

)
∨ ¬�aP

(
C10(a, b) ∧ C11(a) ∧ C12(b)

)
(15)

The first disjunct of (15) is clearly false for b’s action plan C12(b)⇒b A8(b),
because driver a cannot rationally believe that a failure to hit the brake is
consistent with it. The second disjunct is likewise false, because driver a
has no reason to believe that C10(a, b), C11(a, c) and C12(b) are mutually
inconsistent. Thus (15) is false, and we have a violation of autonomy. The
driver should therefore slam on the brake. There is no need to check the
other ethical principles, because only one of the possible action plans satisfies
the autonomy principle.

4.5 Implementation issues

While it is not our purpose to address engineering aspects of deontically-
grounded VA, we can take note of some implementation issues that arise.
The main implication of our proposal is that the portion of an AI system
that makes ethically relevant decisions must be rule-based (i.e., an instance
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of GOFAI) because it must consist of action plans. Fortuitously, action plans
have an if–then structure that is convenient for coding rules.

One can ask whether a rule-based system is adequate for the complexities
of real-life decision making, but this is, of course, a problem that is not
confined to deontically-based VA. We do not attempt here to judge the
versatility of rule-based AI, but we note that it seems to be increasingly
viewed as technically viable and even necessary due to the nontransparency
of deep learning and support vector machines. Regarding autonomous
vehicles, for example, Brandom (2018) states, “Many companies have shifted
to rule-based AI, an older technique that lets engineers hard-code specific
behaviors or logic into an otherwise self-directed system.” The technical
community has ample experience at accurately coding and debugging huge
rule-based systems. An ordinary (non-self-driving) automobile is already
regulated by more than 100,000 lines of code. Ethics-based systems can
evolve through several versions and be updated as necessary, as with any
other type of complex software. Rule-based AI can also be combined with
machine learning (Woźniak and Po lap, 2020). Even in a pure ML system, it
is possible to derive rules that approximate the directives generated by ML
(Soares et al., 2020) and perhaps subject them to ethical evaluation.

The test propositions used to evaluate the ethical status of action plans
need not appear in the AI rule base, and it is a further implementation decision
whether to generate them automatically. This is fairly straightforward (less
so for the utilitarian test), because the procedure for doing so can be clearly
specified as shown above. Machine learning and other forms of empirical VA
can then be used to evaluate the truth of the test propositions.

5 Conclusion

As AI inexorably enters everyday life, it takes a seat alongside human persons.
AI’s increasing sophistication bestows power, and power begets responsibility.
Humanity’s goal should be to invest machines with a moral sensitivity that
mimics the human conscience. But conscience is dynamic rather than static,
and adjusts ethical principles systematically to empirical observations. In
this paper we have elaborated two challenges to AI moral reasoning that
spring from the interrelation of facts and values. The first is a confusion
that mistakenly identifies facts for values; the second is a confusion that
misunderstands the process of moral reasoning. In addressing these challenges,
we have identified instances of how and why AI can commit the naturalistic
fallacy, of moving illicitly from “is’s” to “oughts,” and doing so oversimplifies
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the process of moral reasoning. We have sketched, in response, a proposal
for understanding moral reasoning in machines, one that highlights how
deontological ethical principles can interact with factual states of affairs.
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