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Abstract

There are many goals for an AI that could become dangerous if the AI
becomes superintelligent or otherwise powerful. Much work on the AI
control problem has been focused on constructing AI goals that are safe
even for such AIs. This paper looks at an alternative approach: dening
a general concept of low impact. The aim is to ensure that a powerful
AI which implements low impact will not modify the world extensively,
even if it is given a simple or dangerous goal. The paper proposes various
ways of dening and grounding low impact, and discusses methods for
ensuring that the AI can still be allowed to have a (desired) impact despite
the restriction. The end of the paper addresses known issues with this
approach and avenues for future research.
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1 Introduction

Imagine an articial intelligence that has been given a goal such as make pa-
perclips, lter spam in this account, or cure this persons cancer. If this AI
is not very powerful, it is likely to attempt to achieve its goals in the ways we
intend: improving industrial production, analysing and selectively ltering in-
coming messages, or looking for compounds able to dierentially attack cancer
cells.

If the AI becomes very powerful, however, these goals all become problematic
[Bos14]. The goal make paperclips is perfectly compatible with a world in
which the AI expands across the Earth, taking control of its resources to start
an intense mass production of paperclips, while starting to launch colonisation
projects for the other planets to use their resources for the same purposes, and so
on. In fact, a naive version of the goal make paperclips mandates such actions.
Similarly, lter spam is compatible with shutting down the internet entirely,
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and cure this persons cancer is compatible with killing her and destroying all
the cells in her body.

There are several proposed approaches to combat this issue. The most stan-
dard is to add something to the goal, eshing it out so that it includes safety
components (and dont kill anyone, or inadvertently cause their deaths, or...).
As the AIs power increases, its potential inuence over the world increases as
well, and the safety components need to be eshed out ever more (...and dont
imprison people, or cause a loss of happiness or perceived liberty or free will,
or...). The Friendly AI approach aims roughly to specify these safety com-
ponents in as much specic detail as possible [Yud08]. Other approaches aim
to instil the these components via implicit or explicit learning and feedback
[Dew11, Arm15].

This paper takes a dierent tack. Instead of specifying the safety compo-
nents, it aims to ensure AI has a low impact on the world. Given this low impact,
many otherwise unsafe goals become safe even with a very powerful AI. Such
an AI would manufacture a few more paperclips/lter a few more messages/kill
a few cancer cells, but would otherwise not take any disruptive action.

The rst challenge is, of course, to actually dene low impact. Any action
(or inaction) has repercussions that percolate through the future light-cone,
changing things subtly but irreversibly. It is hard to capture the intuitive human
idea of a small change.

There are a few intuitive ways in which an action can have a low impact,
though, which we examine in some depth in Section 3. For example, if we can
describe the universe in terms of a huge number of disparate but well-chosen
variables and the action has little impact on their values, then it was not of
high impact. We can also assess whether knowing the action is particularly
important in terms of predicting the future, or whether we can see if the actions
are likely to be detectable at a later date. If the action is such that any dierence
to the universe is lost in entropy or absorbed into a chaotic and unpredictable
process, it certainly has a low impact. Finally, we can also abstractly compare
the features of probability distributions of future worlds given the action or not.

The second challenge, tackled in Section 4, is to gure out how to ensure
that the AIs impact is not too low – that we can still get useful work out of the
AI, without risking a larger or negative impact. Although low impact seems to
preclude any action of signicance on the part of the AI, there are a number of
ways around this limitation. Unlike the bad AI impacts that we are trying to
prevent, we can often have a much clearer idea of the positive impact we are
attempting to accomplish. This allows us to construct various specic setups
and targeted loopholes to allow specic high impact from otherwise low impact
AIs.

The nal, brief, section looks at some of the problems and unresolved issues
with the current setup – and hence the directions for future research.

2 The General Framework

2.1 The penalty function

Although determining what exactly counts as impact will be a thorny issue,
we can nonetheless characterise the approach abstractly. The basic idea is that

2



the AI has some active goal, such as cure cancer or lter spam, but it wants
to pursue this goal without changing the world in any important way. We can
then describe its utility function as follows:

U = u− µR (1)

The function u is a standard utility function that gives the AI its active goal.
The function R is the penalty function, penalising the AI for having a large
impact. The number µ is some scaling factor, setting the importance of low
impact relative to the AIs active goal u.

In order to prevent the AI accepting a large R penalty in exchange for a
large u gain, we will want to dene a bounded u, such that performance close
to the maximum bound is not too dicult to obtain. There is no such bound
on R, of course: the more impact the AI has, the more it gets penalised.1

2.2 Dening the alternatives

To dene low impact, we rst will need a baseline for comparison. What is a
low impact, as opposed to a non-low one? The most natural alternative, and
the one well use, is the world in which the AI is never successfully turned on
in the rst place, or, to be more precise: some prior probability distribution P
over the set of worlds W conditional on the AI not having been turned on. An
AI that was never turned on is assumed to have very low impact; the behaviour
of the active AI is compared with this baseline.

For such a distribution to make sense, well assume the turning on of the AI
does not occur with probability 1. For instance, we can make it depend on a
signal going through a specic wire, which goes through some noisy environment
– say, an unstable gas – that has a tiny chance of interrupting the signal. If the
signal is interrupted, the AI is not turned on.

Designate the event of the signal passing through the wire as X (which then
turns on the AI), and the signal being blocked as ¬X (which then leaves the
AI o). We then want the AI to have a low impact on the world, with a low
impact being informally dened as the world, conditional on X, being not too
dissimilar from the world, conditional on ¬X. The purpose of this paper is to
make this denition rigorous2.

Since conditional probability does not depend on the probability of the event
being conditioned on, we would want the probability of X to be almost 1 – the
AI is almost certain to be turned on. This is consistent with the fact that,
having built an AI, the designers would certainly want to make use of it3.

1Note that equation (1), if it works as intended, makes the AI relatively transparent to
humans. The active goal u can be simple, while the intent of low impact is clear.

2Instead of comparing the world conditional on X with the world conditional on ¬X, it may
be desirable to consider various kinds of subjunctive or counterfactual suppositions instead if
were especially interested in, say, Xs expected causal consequences and not in its evidential
impact. For the sake of simplicity, however, well restrict attention to the standard notion of
conditional probability instead in this report.

3There are many subtleties here, the main ones of being that if ¬X happens, humans
are likely to question their probability estimates, and will likely just try turning it on
again. Humans concluding that something is wrong can be dealt with via methods similar
to http://lesswrong.com/r/discussion/lw/lxl/humans_get_different_counterfactuals/.
Preventing the AI from taking into account future human attempts to turn it on again could
be addressed by adapting the methods proposed in http://lesswrong.com/r/discussion/lw/
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2.3 Boxing the AI

One useful precaution is to box the AI, conning it to a sealed environment
somewhat isolated from the outside world. Unlike other boxing suggestions
[ASB12, Bos14, Yam12], the aim here is not to prevent the AI from having an
impact by conning it. Rather, it is to minimise the dierence between worlds
with X and ¬X. The box is not to prevent the AI from acting (the denition
of low impact will ensure that), but rather to prevent us from seeing that the
AI is active. Thus any visible impact of the AI will come only from via the AIs
decisions, rather than from its mere existence.

3 Dierent measures of low impact

3.1 The fundamental challenge

The fundamental challenge of developing the low impact approach is that, from
a physical point of view, everything done or not done has an impact (a prob-
abilistic one, at least), across all possible futures. Therefore the world, given
X, must be fundamentally dierent from the world, given ¬X, simply because
of the dierence between X and ¬X. Particles will be arranged dierently in
these dierent scenarios, and this eect will compound the further we get from
the event.

What were really interested in no important impact. It matters little if the
atoms that dene the US president are a little to the left of where they would
be otherwise. It matters a lot that the AI doesnt escape from its box, eliminate
all humans and optimise the universe in the service of goal u.

A second component of this challenge is that the AI may end up creating an
importantly dierent world, simply because some processes such as the weather
are chaotic andX versus ¬X change the initial conditions. Yet in these cases, its
impact should nonetheless count as low. Suppose, for instance, the upcoming
election would be very close. The AI makes breakfast on election day for a
capricious and unpredictable voter who ends up voting for Alice instead of Bob
in part because he had apricots instead of biscuits to eat. As a result, Alice is
elected instead of Bob. Although the eect of the breakfast decision is large, it
ought not be considered high impact, since if an election was this close, it could
be swung by all sorts of minor eects. Well therefore investigate probabilistic
approaches: what sorts of changes can be predicted ex ante if X is true?

3.2 Coarse graining: Twenty billion questions

One way to solve the fundamental challenge is rst to nd a way of coarse-
graining the set of worlds. That is, we partition the set of worlds into small
cells, and any two elements of the same cell count as equivalent for our purposes.
Generally these cells will be determined by the values of certain variables or
characteristics. We can then measure impact in terms of the AIs expected
eects over this partition. Thus if A is any element of this partition, we typically

luy/acaucal_trade_barriers/. But a detailed discussion of this is beyond the scope of this
current report.
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expect the probabilities P (A|X) and P (A|¬X) to be close.4

The purpose of coarse graining is to dene the world in sucient detail that
the AI cannot have a large impact without disrupting most of those details.
The characteristics used must be as broad and as diverse as possible, making it
impossible for the AI to grain great power without disrupting some of them.5

For instance, we could use the air pressure in Dhaka, the average night-time lu-
minosity at the South Pole, the rotational speed of Io, and the closing numbers
of the Shanghai stock exchange. To be condent that we can suciently con-
strain a super-intelligent AI, well need millions if not billions of these variables,
separating the universes into uncountable numbers of dierent cells6.

Of course, we have to take care in deciding which characteristics to use. This
procedure doesnt work if some variables are too directly connected with X or
¬X. The electricity consumption of the AI, for example, cannot be a variable,
but the electricity consumption of the entire county could be if the AIs usage
is likely to be lost in the noise. But we can hope that for large scale issues,
that the universe is roughly unchanged given X and ¬X.

For any world w, we can dene a world vector Vw which is the values taken
by the billions of chosen variables7. We can then make use of vectors to coarse
grain the space of worlds, dening an equivalence relation:

v ∼= w i Vv = Vw

The cells are the equivalence classes of this relation. This allows us to make
statements like the probability of w is equal whether or not the AI was turned
on. Without the course graining, P (w|X) = 0 or P (w|¬X) = 0, depending on
whether or not w contained the AI. But with the coarse graining, the statement
becomes:

P (Vw|X) = P (Vw|¬X)

And, as long as those variable values are possible given X and given ¬X, the
above formula makes sense.

Then we can formulate low impact as some sort of measure of the dierence
between the expected worlds given X and ¬X. The l∞ norm, for instance, could
work:

R = max
w

|P (Vw|X)− P (Vw|¬X)| (2)

The box dened by this norm is illustrated in gure 1. Softer versions of this
maximum norm could work as well.

4Note that the AIs limitations make this approach easier. If the AI has diculty predicting
A precisely (maybe because A is chaotic or because of the fundamental entropy limitations on
information), then those two probabilities are likely to be closer than otherwise. This helps to
distinguish small inadvertent impacts the AI might have from the larger deliberate ones we
want to avoid.

5Its important to note that an extremely powerful AI could potentially gain control of the
world and set the characteristics to whatever values it wants. Therefore, the purpose of the
coarse graining approach is to catch the AI before it initiates sweeping changes to the world.

6Though not uncountable in the sense of an uncountable innity, the number of cells
is exponential in the number of characteristics/variables, and is thus easily larger than the
number of particles in the reachable universe. Therefore, as we add variables, the diculty
for the AI to outsmart us and nd an unintended high-impact way of maximising u should
grow fairly rapidly, since all constraints must be met simultaneously.

7Continuous variables will need a sensible binning.
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Figure 1: The many variables dene a box in high dimensional space, which
includes the ¬X point where there is no AI. The AI must maneuver within this
box, which hopefully should reside wholly within the safe zone.

An important feature of the approach is that we have no need to measure
these billion variables precisely. They are simply used to dene the coarse
graining, with the AI then trying to get its best estimate of R. Nor do they
need to perfectly dene the variables: the closing numbers of the Shanghai stock
exchange could be dened as a specic output along a specic wire. In worlds
where the stock exchange didnt exist, that input would correspond to something
else entirely – maybe blank signals, maybe noise. But this shouldnt matter,
as it still coarse grains worlds with stock exchanges emitting along this wire,
given X together in the same cell with worlds with stock exchanges emitting
along this wire, given ¬X and similarly for worlds without8.

3.3 The importance of knowing X

A related option is to measure specically the informational value of the AI on
things we might care about. The intuitive idea is that if the AI is high impact,
then knowing whether or not the AI was turned on tells you a lot more about
the future of the world than another generic piece of information. We can then
set the penalty R to measure the importance of X¬X with respect to other
pieces of evidence. If the AI has truly low impact, then if presented with a large
number of facts about the world, X will not stand out as being more informative
than other facts.

How would we measure importance? One approach is to look at a large set
U of dierent utility functions, and check that knowing X makes little expected
dierence for any of them9.

8Note that this is in contrast with more traditional AI approaches, where the terms have
to be correctly dened [Yud08] or grounded [Har90]. The purpose is not to have the meaning
of each variable dened precisely, but to capture so many variables that they limit the AIs
ability to have large impacts.

9One method for choosing U is to have the AI or some other superintelligence select a
class of utility functions that it thinks is likely to contain the set of actual or potential human
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When measuring importance, we could either check the expected dierence
of knowingX, or the expected importance of other facts, conditional on knowing
X. More formally, let F be a large set of facts compatible with both X and
¬X, and dene:

R = max
u′∈U ,S⊂F

|E(u′|S ∪X)− E(u′|S ∪ ¬X)|

3.4 Undetectable means unimpactful?

This sections looks at another way of dening low impact: undetectability. If,
during the 19th century, there was an inhabitant of London, and there now
remains no record whatsoever of their existence, it is likely that they had a
very low impact. Presume that we are given a partial description of them, and
asked, from the point of view of today and all the evidence we have, whether
they existed or not. If we really cannot tell either way, this seems a denitional
example of low impact: their potential impact is literally lost in the noise of the
world10.

How could this be formalised? Suppose that the AI uses a probability esti-
mator P ′. This estimator is bounded by practical concerns, as any real-world
agent can only have bounded rationality. Its unbounded equivalent is P . And
these estimators have some level of reection [CYHB13], so P ′ can express some
estimates over the outcome of P ′ (self-reection) and P (modelling of a superior
rational agent). Let b designate background information about the world (prior
to X), and let G designate the set of events in a slice S of event X¬Xs future
light-cone – maybe the slice 50 (time-like) years in the future.

Then what we would want is that P (g|X, b) = P (g|¬X, b) for g ∈ G – that
the likely future is identical whether or not the AI is turned on or not (as
assessed by the unbounded version of the agent, with access to all of S). If
we designate the expectation estimator derived from P ′ as E′, this reduces to
wanting:

R = E′(|P (g|X, b)− P (g|¬X, b)|) = 0

This expectation is both over P (the AIs estimate of its unbounded estimator)
and over the likely g ∈ G (the likely future; this also depends on the AIs policy
choices).

This works if the impact of the AI is really lost through entropy, such that
even P cannot detect it. However, an unbounded agent with full access to the
slice G, might be able to always detect the presence of an AI, no matter how
low impact it attempts to have.

utility functions, or some near enough approximation. That is, we want U more or less to
contain representations of everything humans may really care about. If the AI does not, in
expectation, aect the elements of U that much, then it counts as low impact in the desired
sense of the term. Just as in the coarse graining case, wed want to add a variety of other
utilities to U , in case there are vulnerabilities that have not occurred to us. We of course
will need to exclude utility functions that care directly about whether X for this approach to
work.

10Of course, some care must still be taken when we decide how to describe this person. For
instance, we cant tell now whether there really was somebody called Jack the Ripper who
was a serial killer and had exactly 100,000 hairs on his head at midnight on 1 January 1888.
The more formal development of this approach below will eliminate this issue.

7



In that situation, we can consider the change in P as its fed information
from G, one bit at a time. When P has all of G, it will detect the presence of
the AI, but before that point, it will have doubts. An AI that optimises the
world is likely to leave many traces all over G; one that changes little will leave
corresponding few choices. For 0 ≤ ρ ≤ 1, designate by gρ a random sampling
of G where we have randomly chosen a proportion ρ of all the data in G. We
can designate a new measure of R:

R = min
ρ

{
E′

(
P (gρ|X, b)

P (gρ|¬X, b)

)
> 10, or E′

(
P (gρ|¬X, b)

P (gρ|X, b)

)
> 10

}
(3)

Here R is a measure of how much information P is likely to need before
detecting the dierence between X and ¬X (dierence being somewhat ar-
bitrarily dened as the expected ratio of probabilities, or inverse ratios, being
higher than 10).

3.5 Comparing distributions abstractly

To avoid some of the issues and choices needed for the options discussed so
far, we can attempt to compare the two conditional probability distributions
P (−|X) and P (−|¬X) abstractly. The intuition behind this is that if we have
a low impact AI or no AI at all, the probability distribution over future worlds
is likely spread far and wide across many dierent options, but if there is a
powerful unconstrained AI, the future is likely to be highly optimised causing
P (−|X) to take on a dierent shape. We can therefore compare the conditional
distributions by looking at various descriptors they might have – means, vari-
ances, peaks, and so on. Such descriptors depend on the underlying metric on
the set of worlds W, and so ideally these descriptors will be very similar for a
wide variety of natural metrics we could choose.

The weakness of this approach is that we have an extremely reduced un-
derstanding of what is going on in the comparison, so we dont know if the AI
can produce a distribution P (W|X) that is formally similar to P (W|¬X), but
in practice is a very concentrated, u-optimised world. However, perhaps with a
suciently robust statistical characterisation of the relevant distributions, this
wont be an issue.

3.5.1 Generalised Cross-Entropy

One natural abstract way of measuring the expected impact of X is to compare
the divergence between P (W|X) in terms of P (W|¬X). If the two distributions
are relatively close, then X likely does not have an especially large impact.

Unfortunately, its not obvious what particular measure of divergence we
ought to use. Kullback-Leibler divergence—the standard measure—wont work
in this case. Let PX = P (W|X) and P¬X = P (W|¬X). PX(X) = 1 and
P¬X(X) = 0, so DKL(P¬X ||PX) = ∞.

There are, however, other measures of generalised entropy and divergence
that are bounded and may be able to do the job. Bounded Bregman-divergences,
for instance, are often used to quantify the amount of generalised information
needed to move from one probability function to another.11 Whether such an
approach will work for our purposes remains to be seen.

11The precise details of generalised measures of entropy and Bregman divergences and their
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4 High impact from low impact

All the preceding methods aim to reduce the impact of the AI. Of course, we
dont actually want a low impact overall – we want a low negative impact. The
problem is that we cannot successfully dene ahead of time what these negative
impacts are.

So how can we ensure that we actually get some level of positive impact from
using such AIs?

4.1 Calibrating the penalty function

The most obvious option is to tune the dial in equation (1) by changing the
value of µ. We can start with a very large µ that ensures no impact at all – the
AI will do nothing. We can then gradually reduce µ until we get an action that
actually increases u.

This does not seem especially safe, however. The rst issue is that we have
little understanding of the correct value for µ, so little understanding of the
correct rate to reduce µ at. It is conceivable that we spend a million steps
reducing µ through the do nothing range, and that the next step moves over
the safe increase of u, straight to the dangerous impact area. In other words,
there may be a precipitous jump from the level at which µR dominates u, to the
level at which u becomes suciently unconstrained by µR to lead to dangerous
behaviour. See gure 2 for illustration.

Figure 2: Though it may intuitively feel there is a large zone between the AI
doing nothing and having a dangerous behaviour (dial on the left) this need not
be the case (dial on the right).

The central failure, however, is that in many cases it is not clear that low
impact is compatible with any increase in u. In particular, when its clear that
the AI has done something, low impact might be impossible. Even the simple
fact that the AI had done anything might get reported, passed on, commented
upon. It might aect the whole future development of AI, economic policy,
philosophy, and so on. This might disrupt any eect of low impact (e.g. any
action the AI takes might have an impact the AI can predict), meaning that
there is no safe range for µ: the AI must either do nothing, or have a large
impact.

However, though we cannot successfully dene the negative impacts of the
AI we wish to avoid, we are on much rmer grounds when dening the positive

relationship to information theory are involved and not worth expounding in detail here. For
extended discussions, see [GR07] and [GD04].
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aim we are looking for. This suggests other ways of producing higher impact:
by specically allowing what we want to allow.

4.2 Unsafe output channel

The easiest way to allow for higher impact, is to specically exclude the AIs
output from the low impact requirements. For instance, assume the AI is going
to send out message O. To ensure that P (O|¬X) 6= 0, we set up an alternative
system that will produce a random message.

Then we exclude the contents of O from the low impact considerations. For
instance, we can modify the coarse-graining approaching developed above by
replacing equation (2) with R = maxw |P (Vw|X,O) − P (Vw|¬X,O)|. Alter-
natively, we can abstractly compare P (W|X,O) with P (W|¬X,O), or replace
equation (3) with:

R = min
ρ

{
E′

(
P (gρ|X, b,O)

P (gρ|¬X, b,O)

)
> 10, or E′

(
P (gρ|¬X, b,O)

P (gρ|X, b,O)

)
> 10

}


All of these conditionings reect the fact that though a coherent O is likely
to present very strong evidence for X over ¬X, we can control for any further
evidence – such as the evidence provided by an AI expanding and optimising
the world. A diagram of the setup for the undetectable approach of section
3.4 is given in gure 3.

This type of low impact keeps the AI from having an impact, outside of the
content of the message O. It does not make the message O itself safe – O is
excluded from any low impact requirements. Therefore, the use of this method
is to block other routes for AI inuence, and conne the risk to the output itself,
which can still be very dangerous [Bos14].

4.3 WBE, chatbots, and conditioning on results

As we just observed, one of the problems of low impact is the content of any
message the AI sends out. Indeed, unless we condition away that message as in
the previous subsection, the very existence of a coherent message is a potentially
massive indication of impact: it means the AI was turned on and did something.

So one way of dealing with this is to have something else in the box that could
output a coherent message. Maybe a real human12, a whole brain emulation
[SB08], another less intelligent articial agent, a chatbot, or maybe a random
selection of internet messages. If the AI is not turned on – if ¬X – then the
other agent will output some message on the subject. So the emission of a
coherent message per se is no longer surprising, nor direct evidence for the AI
being turned on.

In that situation, the low impact setting now motivates the AI to do a
perfect imitation of a chatbot/human/WBE – and nothing more. But we can
get around this restriction by conditioning on something other than the actual
content of the message.

Suppose that we want the AI to make us rich – maybe with stock market
advice. Then, in a years time, if we have, say, multiplied our fortune by ten,

12About to die, so never able to talk about this experience, or sworn to eternal silence?
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Figure 3: The various elements that go into dening the penalty function for a
low impact AI aiming to be undetectable but allowed an unsafe output channel.

we will announce the AIs advice was good. Call this announcement A. Then
we use A to condition on as in Section 4.2, instead of O.

What does this mean in practice? It means that the AI is committed to
low impact, given that we multiply our fortune by ten. So, the world in which
we get a random lucky message O and then get rich must resemble the world
in which the AI gives us advice O and we get rich13. To make this safe, we
would want P (A|¬X) to not be too low – we have a non-insignicant chance
of getting rich even if the AI was actually not present. So a world with A
and ¬X is not particularly unusual; therefore, the world with X that is of low
impact compared with it is not particularly unusual either. We might even be

13Note that we condition on the announcement A (which is easy to dene) not on the
concept of getting rich (or whatever else our goal is) as that might be harder. This would be
very dangerous if we told the AI ensure A happens, as A is only loosely connected with our
true goal. But here we are using A as a sucient measure of success in a world in which the
AI doesnt exist. In that world, it is a safe measure of success. Hence, since we are extending
that world via low impact to situations where the AI exists, the dierence between A and our
true goals is not an issue.
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able to specify P (A|¬X) precisely – maybe there is a selection of a thousand
stocks, and the AI recommends one; otherwise a random one is selected. Then
A is the announcement that that stock outperformed all the others, making
P (A|¬X) = 11000.

Essentially, the AI operates here as a probability pump, pushing us in the
direction we might have been able to achieve anyway, but now increasing its
probability. It gives us advice that that a human/WBE/chatbot/random selec-
tor could have given us, but gives us the best version of that advice.

4.4 High impact from multiple conditional low impact

Take the following hypothetical. Assume that an asteroid is heading to Earth,
and that we wish to aim a laser to deect it. If we ask a single low impact AI
to do so, low impact will prevent it from doing so.

But now imagine there are two AIs, Alice and Bob, and that they are acti-
vated by events X and Y respectively. Each is indierent or nearly indierent
to how to world ends up given that the other is turned on. However, conditional
on Bob being turned o, Alice is low impact but desires to output the correct
x-coordinate for aiming the laser (this denes uAlice). Likewise, conditional on
Alice being turned o, Bob is low impact, but desires to output the correct
y-coordinate.

So, because Alice only cares about worlds in which ¬Y , even if shes highly
condent that Y , shell still output the correct x-coordinate. Furthermore,
since in the ¬Y -worlds, the laser will miss the asteroid for want of a correct
y-coordinate, she can still count as conditionally low impact. And the same,
mutatis mutandis, goes for Bob.

So, both Alice and Bob will output the correct coordinates, and we get a
large impact – as long as we set the probabilities of ¬X and ¬Y low enough.
But all negative AI impacts – such as sneaking something dangerous into the
coordinates, or escaping and optimising the world – can still be precluded. This
is illustrated by gure 4.

This doesn not work if the two AIs are robots that can move around and
observe that the other is, in fact, active. In that case, they have to act as if the
other is not active while observing that they are, thus causing them to come
up with complicated explanations as to why this is so. Their behaviour is thus
likely to become undened. In particular, they are probably not going to act as
low impact laser aimers, see gure 5.

4.5 Extension of category concepts

The previous aiming laser example does not allow the AIs to have a (desired
and targeted) high impact in general situations. It does not, for instance, allow
the AIs to walk around and notice that the other AI is actually turned on – it
only works because they dont know the other AI was activated.

How might we make this approach more broadly applicable? One potential
idea is for the AI to derive general concepts of low impact conditional on ¬X
– concepts such as dont ll the universe with self-replicating probes or dont
take over the world conditional on the other AI not being activated. Then we
could hope that these concepts can be generalised to cover the X situation as
well. Specically, we might imagine that the AI creates the code for a subagent,
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Figure 4: Two AIs, each acting on the assumption that the other one is not
active, independently compute their half of the aiming coordinates.

Figure 5: Two robots, each acting on the assumption that the other one is not
active, notice the presence of the other and their behaviour becomes undened.

using these concepts, and that the subagent goes out and does things in the
world, maybe interacting with the other subagents, and physically aiming the
laser.

There are two fundamental challenges here. The rst is that we dont want
the subagent to generalise low impact to include not outputting the correct
y-coordinates. This could be avoided either by requiring that the categories
used be roughly independent of X vs ¬X, or by using some of the methods of
section 4.3 (a successful deection of the asteroid seems a pretty clear outcome
that could be conditioned on).
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The second issue is more problematic. Consider the concept C: if ¬X,
nothing happens, if X, a nuclear war starts. This concept can describe low
impact, conditional on ¬X, but is obviously terrible at extending low impact to
the X case.

Now C looks disjunctive and articial, and wed like to rule concepts like
this out. But it turns out to be hard; there are no easy ways to distinguish
unnatural disjunctive categories from natural ones (see the issues with Grue
and Bleen versus Blue and Green for a very relevant example of this kind of
problem [Goo83]). Research in this possibility is ongoing14.

5 Known issues

There are a couple of diculties with the whole low impact approach. The
general one, common to the Friendly AI approach as well, is that the AI may
think of a loophole that we cannot; the risk of this is low the more analysis we
do and the better we understand the situation.

But there are more specic issues. The R in equation (1) is not a utility
function; instead it is a penalty function that the AI itself calculates, using its
own probability modules P ′ (and in one case it uses this to estimate the output
of an idealised probability module P – see Section 3.4).

What would happen if the AI self-modies and changes P ′? There is a
meta-argument that this shouldnt matter – the AI is committed to low impact,
and therefore it will ensure that its future copies also have at least as much low
impact. This argument does not feel fully reassuring, however, and it is very
possible that some bad programming would be disastrous. For instance, we
want P ′ to be properly abstractly dened, not labeled as (the equivalent of) the
output of that box over there, as that box over there can always be modied
physically. But it might not always be clear how the agent is formally dening
P ′; this is especially the case if there is some implicit probability estimate
happening elsewhere in the AI. For instance, what if the pre-processing of inputs
to P ′ was very important, and R was dened sloppily enough that changing the
pre-processing could change its denition?

The more general issue is that any goal that is not a utility function is
unstable [Omo08], in that an agent with one will seek to change it if they can15.

The corresponding author intends to analyse the issue in subsequent papers:
what do unstable goals tend to if the agent can self-modify? This would both be
useful to preserve the needed parts of unstable goals (such as the low impact)
and might also allow us to express things like low impact in a clear, and we
hope instructive, utility function format.

14See the corresponding authors work at http://lesswrong.com/lw/mbq/the_president_

didnt_die_failures_at_extending_ai/ , http://lesswrong.com/lw/mbp/green_emeralds_

grue_diamonds/ , http://lesswrong.com/r/discussion/lw/mbr/grue_bleen_and_natural_

categories/ , and http://lesswrong.com/r/discussion/lw/mfq/presidents_asteroids_

natural_categories_and/.
15Utility functions are generally seen as stable, but even there there are subtleties. Because

utility functions form a kind of ane space, any utility function being unstable means almost
all of them are. To see why, note that a stable utility function mixed with or added to an
unstable one will be unstable. It still remains the case, though, that nearly all utility functions
we could naturally think of, are stable.
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There is also the risk that a series of low impact AIs, through their indi-
vidual decisions, end up having a large impact even if no specic AI does so.
That particular problem can be addressed by making the AIs indierent to the
existence/outputs of the other AIs16. However, this is a patch for a particular
issue, rather than a principled declaration that there are no further issues. Such
a declaration or proof would be of great use, as repeated patching of an idea
does not end when the idea is safe, but when we can no longer think of reasons
it is unsafe.
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